Improved Productivity Using Deep Learning–assisted Reporting for Lumbar Spine MRI

医学 腰椎 放射科 分级(工程) 腰椎 磁共振成像 物理疗法 外科 土木工程 工程类
作者
Desmond Shi Wei Lim,Andrew Makmur,Lei Zhu,Wenqiao Zhang,Amanda J. L. Cheng,David Soon Yiew Sia,Sterling Ellis Eide,Han Yang Ong,Pooja Jagmohan,Wei Chuan Tan,Vanessa Meihui Khoo,Ying Mei Wong,Yee Liang Thian,Sangeetha Baskar,Ee Chin Teo,Diyaa Abdul Rauf Algazwi,Qai Ven Yap,Yiong Huak Chan,Jiong Hao Tan,Naresh Kumar,Beng Chin Ooi,Hiroshi Yoshioka,Swee Tian Quek,James Thomas Patrick Decourcy Hallinan
出处
期刊:Radiology [Radiological Society of North America]
卷期号:305 (1): 160-166 被引量:30
标识
DOI:10.1148/radiol.220076
摘要

Background Lumbar spine MRI studies are widely used for back pain assessment. Interpretation involves grading lumbar spinal stenosis, which is repetitive and time consuming. Deep learning (DL) could provide faster and more consistent interpretation. Purpose To assess the speed and interobserver agreement of radiologists for reporting lumbar spinal stenosis with and without DL assistance. Materials and Methods In this retrospective study, a DL model designed to assist radiologists in the interpretation of spinal canal, lateral recess, and neural foraminal stenoses on lumbar spine MRI scans was used. Randomly selected lumbar spine MRI studies obtained in patients with back pain who were 18 years and older over a 3-year period, from September 2015 to September 2018, were included in an internal test data set. Studies with instrumentation and scoliosis were excluded. Eight radiologists, each with 2–13 years of experience in spine MRI interpretation, reviewed studies with and without DL model assistance with a 1-month washout period. Time to diagnosis (in seconds) and interobserver agreement (using Gwet κ) were assessed for stenosis grading for each radiologist with and without the DL model and compared with test data set labels provided by an external musculoskeletal radiologist (with 32 years of experience) as the reference standard. Results Overall, 444 images in 25 patients (mean age, 51 years ± 20 [SD]; 14 women) were evaluated in a test data set. DL-assisted radiologists had a reduced interpretation time per spine MRI study, from a mean of 124–274 seconds (SD, 25–88 seconds) to 47–71 seconds (SD, 24–29 seconds) (P < .001). DL-assisted radiologists had either superior or equivalent interobserver agreement for all stenosis gradings compared with unassisted radiologists. DL-assisted general and in-training radiologists improved their interobserver agreement for four-class neural foraminal stenosis, with κ values of 0.71 and 0.70 (with DL) versus 0.39 and 0.39 (without DL), respectively (both P < .001). Conclusion Radiologists who were assisted by deep learning for interpretation of lumbar spinal stenosis on MRI scans showed a marked reduction in reporting time and superior or equivalent interobserver agreement for all stenosis gradings compared with radiologists who were unassisted by deep learning. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Hayashi in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
周小鱼完成签到 ,获得积分10
刚刚
咖啡博士完成签到 ,获得积分10
1秒前
DW完成签到,获得积分10
1秒前
阿波完成签到,获得积分10
1秒前
猪肉炖粉条完成签到,获得积分20
2秒前
帕尼灬尼完成签到,获得积分10
2秒前
棉花糖完成签到 ,获得积分10
2秒前
今夕何夕发布了新的文献求助10
2秒前
加减乘除完成签到,获得积分10
3秒前
冰糖葫芦娃完成签到,获得积分10
3秒前
babe完成签到 ,获得积分10
4秒前
高贵的小熊猫完成签到,获得积分10
5秒前
微生完成签到 ,获得积分10
5秒前
Tomi发布了新的文献求助10
6秒前
周宇飞完成签到 ,获得积分10
6秒前
小缓完成签到,获得积分10
7秒前
ypp完成签到,获得积分10
7秒前
灿烂完成签到,获得积分10
7秒前
8秒前
陈少华完成签到 ,获得积分10
8秒前
iAlvinz完成签到,获得积分10
8秒前
chen完成签到,获得积分10
9秒前
末小皮完成签到,获得积分10
9秒前
alan完成签到,获得积分10
9秒前
淡然善斓完成签到,获得积分10
10秒前
changaipei完成签到,获得积分10
10秒前
全一斩完成签到,获得积分10
10秒前
11秒前
周易完成签到,获得积分10
11秒前
foreknowledge完成签到,获得积分10
12秒前
guojingjing发布了新的文献求助10
12秒前
小萌完成签到,获得积分10
13秒前
Jovid完成签到,获得积分10
13秒前
快乐指甲油完成签到 ,获得积分10
13秒前
七月完成签到 ,获得积分10
13秒前
bilibala完成签到,获得积分10
14秒前
louis完成签到,获得积分10
14秒前
Seven7完成签到,获得积分10
15秒前
16秒前
阿媛呐完成签到,获得积分10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555935
求助须知:如何正确求助?哪些是违规求助? 3131542
关于积分的说明 9391519
捐赠科研通 2831325
什么是DOI,文献DOI怎么找? 1556415
邀请新用户注册赠送积分活动 726573
科研通“疑难数据库(出版商)”最低求助积分说明 715890