A New Progressive Multisource Domain Adaptation Network With Weighted Decision Fusion

领域(数学分析) 计算机科学 多源 人工智能 特征(语言学) 模式识别(心理学) 数据挖掘 适应(眼睛) 域适应 机器学习 数学 统计 分类器(UML) 语言学 光学 物理 数学分析 哲学
作者
Zhunga Liu,Liangbo Ning,Zuowei Zhang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (1): 1062-1072 被引量:6
标识
DOI:10.1109/tnnls.2022.3179805
摘要

Multisource unsupervised domain adaptation (MUDA) is an important and challenging topic for target classification with the assistance of labeled data in source domains. When we have several labeled source domains, it is difficult to map all source domains and target domain into a common feature space for classifying the targets well. In this article, a new progressive multisource domain adaptation network (PMSDAN) is proposed to further improve the classification performance. PMSDAN mainly consists of two steps for distribution alignment. First, the multiple source domains are integrated as one auxiliary domain to match the distribution with the target domain. By doing this, we can generally reduce the distribution discrepancy between each source and target domains, as well as the discrepancy between different source domains. It can efficiently explore useful knowledge from the integrated source domain. Second, to mine assistance knowledge from each source domain as much as possible, the distribution of the target domain is separately aligned with that of each source domain. A weighted fusion method is employed to combine the multiple classification results for making the final decision. In the optimization of domain adaption, weighted hybrid maximum mean discrepancy (WHMMD) is proposed, and it considers both the interclass and intraclass discrepancies. The effectiveness of the proposed PMSDAN is demonstrated in the experiments comparing with some state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sanqian911完成签到,获得积分10
刚刚
1秒前
1秒前
Ava应助DrYang采纳,获得10
2秒前
聪明大炮完成签到,获得积分10
2秒前
小滕发布了新的文献求助10
2秒前
王sir完成签到 ,获得积分10
4秒前
科研通AI5应助U9A采纳,获得10
5秒前
5秒前
xuaotian发布了新的文献求助10
6秒前
Lengfeng发布了新的文献求助10
6秒前
Owen应助朱大头采纳,获得10
8秒前
研友_VZG7GZ应助从容迎松采纳,获得10
8秒前
Lucas应助小鹿采纳,获得10
11秒前
Akim应助荔枝吖采纳,获得10
11秒前
顾矜应助鞠佳园采纳,获得10
11秒前
13秒前
djbj2022发布了新的文献求助10
13秒前
顺心的安珊完成签到 ,获得积分10
14秒前
乐666发布了新的文献求助10
15秒前
852应助漂亮的抽屉采纳,获得10
15秒前
15秒前
医者修心发布了新的文献求助10
16秒前
从容迎松完成签到,获得积分10
16秒前
18秒前
共享精神应助Letter采纳,获得10
19秒前
十月完成签到,获得积分10
19秒前
21秒前
从容迎松发布了新的文献求助10
21秒前
22秒前
岳晓彤发布了新的文献求助30
23秒前
博修发布了新的文献求助150
23秒前
SciGPT应助番茄大王采纳,获得10
23秒前
小朱朱完成签到,获得积分20
25秒前
星辰大海应助劳永杰采纳,获得10
25秒前
xiaochen发布了新的文献求助10
28秒前
自然起眸完成签到,获得积分10
28秒前
28秒前
yhx046完成签到,获得积分10
29秒前
samu发布了新的文献求助10
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967841
求助须知:如何正确求助?哪些是违规求助? 3512958
关于积分的说明 11165751
捐赠科研通 3248019
什么是DOI,文献DOI怎么找? 1794087
邀请新用户注册赠送积分活动 874843
科研通“疑难数据库(出版商)”最低求助积分说明 804578