Triclocarban (TCC) is an emerging and intractable environmental contaminant due to its hydrophobicity and chemical stability. However, the antibacterial property of TCC limits its biodegradation, and only the functional enzyme TccA involved in TCC degradation has been characterized to date. In this study, we report a highly efficient TCC-degrading bacterium, Rhodococcus rhodochrous BX2, that could degrade and mineralize TCC (10 mg/L) by 76.8% and 56.5%, respectively, within 5 days. Subsequently, the TCC biodegradation pathway was predicted based on the detection of metabolites using modern mass spectrometry techniques. Furthermore, an amidase (TccS) and a novel phenol hydroxylase (PHIND) encoded by the tccS and PHIND genes, respectively, were identified by genomic and transcriptomic analyses of strain BX2, and these enzymes were further unequivocally proven to be the key enzymes responsible for the metabolism of TCC and its intermediate 4-chloroaniline (4-CA) by using a combination of heterologous expression and gene knockout. Our results shed new light on the mechanism of TCC biodegradation and better utilization of microbes to remediate TCC contamination.