Bearing Remaining Useful Life Prediction Based on Regression Shapalet and Graph Neural Network

可解释性 邻接矩阵 计算机科学 图形 回归 人工神经网络 深度学习 人工智能 卷积神经网络 数据挖掘 模式识别(心理学) 机器学习 理论计算机科学 数学 统计
作者
Xiaoyu Yang,Ying Zheng,Yong Zhang,David Shan‐Hill Wong,Weidong Yang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-12 被引量:60
标识
DOI:10.1109/tim.2022.3151169
摘要

Remaining useful life (RUL) prediction of bearing is essential to guarantee its safe operation. In recent years, deep learning (DL)-based methods attract a lot of research attention for accurate RUL prediction. However, the weak interpretability of the DL models prevents their wide use in practical systems. In this article, the graph is used to represent the degradation state of bearings, and a graph neural network (GNN) is applied for their RUL prediction. Specifically, regression shapelet is proposed to transform the bearings time series data into graph structure first. Then, with the proposed distance matrix/adjacency matrix as the input and smoothed nonlinear health index (SNHI) as the output, a deep GNN model combining graph convolutional neural network (GCN) and gate recurrent unit (GRU) is set up in both spatial and temporal perspectives to predict the bearing RUL. Meanwhile, graph evolution is adopted to monitor the graph changes with time and offer an explanation for the bearing degradation procedure. The experiment study on the PRONOSTIA platform is used to evaluate the proposed method. The results show that the proposed method can well explain the bearing degradation process from the graph perspective and will achieve superior performance to the existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
刘萍发布了新的文献求助10
1秒前
文献荒发布了新的文献求助10
1秒前
852应助圣晟胜采纳,获得10
1秒前
1秒前
冯心宇发布了新的文献求助10
1秒前
Ander完成签到 ,获得积分10
1秒前
1秒前
浮游应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
meym完成签到,获得积分20
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
qsx完成签到,获得积分10
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
4秒前
阿伟完成签到,获得积分10
4秒前
丘比特应助平淡的文龙采纳,获得10
4秒前
poppy发布了新的文献求助10
4秒前
ding应助科研通管家采纳,获得10
4秒前
天天快乐应助坚强的寒风采纳,获得10
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
5秒前
繁荣的秋发布了新的文献求助10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
科研通AI6应助hottest采纳,获得10
5秒前
所所应助科研通管家采纳,获得10
5秒前
Leonzong发布了新的文献求助10
5秒前
852应助科研通管家采纳,获得10
5秒前
所所应助科研通管家采纳,获得10
5秒前
5秒前
可爱的函函应助666采纳,获得10
5秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5261651
求助须知:如何正确求助?哪些是违规求助? 4422731
关于积分的说明 13767337
捐赠科研通 4297220
什么是DOI,文献DOI怎么找? 2357773
邀请新用户注册赠送积分活动 1354169
关于科研通互助平台的介绍 1315315