Bearing Remaining Useful Life Prediction Based on Regression Shapalet and Graph Neural Network

可解释性 邻接矩阵 计算机科学 图形 回归 人工神经网络 深度学习 人工智能 卷积神经网络 数据挖掘 模式识别(心理学) 机器学习 理论计算机科学 数学 统计
作者
Xiaoyu Yang,Ying Zheng,Yong Zhang,David Shan-Hill Wong,Weidong Yang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-12 被引量:37
标识
DOI:10.1109/tim.2022.3151169
摘要

Remaining useful life (RUL) prediction of bearing is essential to guarantee its safe operation. In recent years, deep learning (DL)-based methods attract a lot of research attention for accurate RUL prediction. However, the weak interpretability of the DL models prevents their wide use in practical systems. In this article, the graph is used to represent the degradation state of bearings, and a graph neural network (GNN) is applied for their RUL prediction. Specifically, regression shapelet is proposed to transform the bearings time series data into graph structure first. Then, with the proposed distance matrix/adjacency matrix as the input and smoothed nonlinear health index (SNHI) as the output, a deep GNN model combining graph convolutional neural network (GCN) and gate recurrent unit (GRU) is set up in both spatial and temporal perspectives to predict the bearing RUL. Meanwhile, graph evolution is adopted to monitor the graph changes with time and offer an explanation for the bearing degradation procedure. The experiment study on the PRONOSTIA platform is used to evaluate the proposed method. The results show that the proposed method can well explain the bearing degradation process from the graph perspective and will achieve superior performance to the existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助紧张的寒梦采纳,获得10
1秒前
2秒前
畜牧笑笑完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
尊敬吐司完成签到,获得积分10
3秒前
3秒前
4秒前
gaoyi12356完成签到,获得积分10
4秒前
wanci应助醉熏的飞薇采纳,获得10
4秒前
木木应助可可采纳,获得10
4秒前
烟花应助唠叨的以柳采纳,获得10
4秒前
谨慎初曼给谨慎初曼的求助进行了留言
5秒前
碳14发布了新的文献求助10
5秒前
6秒前
7秒前
xelloss发布了新的文献求助10
8秒前
丰富钢铁侠完成签到,获得积分20
8秒前
8秒前
外向宛菡发布了新的文献求助10
8秒前
8秒前
Phebe发布了新的文献求助10
9秒前
wy.he应助高兴的海亦采纳,获得10
9秒前
研友_Y59785应助高兴的海亦采纳,获得10
9秒前
ZGZ123应助高兴的海亦采纳,获得10
9秒前
9秒前
英姑应助高兴的海亦采纳,获得10
9秒前
9秒前
所所应助高兴的海亦采纳,获得10
9秒前
ED应助高兴的海亦采纳,获得10
9秒前
小二郎应助高兴的海亦采纳,获得30
9秒前
海东来应助高兴的海亦采纳,获得30
9秒前
9秒前
卡卡西应助高兴的海亦采纳,获得30
10秒前
海东来应助高兴的海亦采纳,获得30
10秒前
MchemG应助lf采纳,获得10
10秒前
satan9完成签到,获得积分10
11秒前
11秒前
nz关闭了nz文献求助
11秒前
11秒前
11秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978415
求助须知:如何正确求助?哪些是违规求助? 3522416
关于积分的说明 11213317
捐赠科研通 3259798
什么是DOI,文献DOI怎么找? 1799678
邀请新用户注册赠送积分活动 878563
科研通“疑难数据库(出版商)”最低求助积分说明 806987