Bearing Remaining Useful Life Prediction Based on Regression Shapalet and Graph Neural Network

可解释性 邻接矩阵 计算机科学 图形 回归 人工神经网络 深度学习 人工智能 卷积神经网络 数据挖掘 模式识别(心理学) 机器学习 理论计算机科学 数学 统计
作者
Xiaoyu Yang,Ying Zheng,Yong Zhang,David Shan-Hill Wong,Weidong Yang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-12 被引量:37
标识
DOI:10.1109/tim.2022.3151169
摘要

Remaining useful life (RUL) prediction of bearing is essential to guarantee its safe operation. In recent years, deep learning (DL)-based methods attract a lot of research attention for accurate RUL prediction. However, the weak interpretability of the DL models prevents their wide use in practical systems. In this article, the graph is used to represent the degradation state of bearings, and a graph neural network (GNN) is applied for their RUL prediction. Specifically, regression shapelet is proposed to transform the bearings time series data into graph structure first. Then, with the proposed distance matrix/adjacency matrix as the input and smoothed nonlinear health index (SNHI) as the output, a deep GNN model combining graph convolutional neural network (GCN) and gate recurrent unit (GRU) is set up in both spatial and temporal perspectives to predict the bearing RUL. Meanwhile, graph evolution is adopted to monitor the graph changes with time and offer an explanation for the bearing degradation procedure. The experiment study on the PRONOSTIA platform is used to evaluate the proposed method. The results show that the proposed method can well explain the bearing degradation process from the graph perspective and will achieve superior performance to the existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助小马哥36采纳,获得10
刚刚
灵巧荆发布了新的文献求助10
1秒前
小二郎应助侦察兵采纳,获得10
1秒前
爆米花完成签到 ,获得积分10
1秒前
今后应助Evan123采纳,获得10
1秒前
凤凰之玉完成签到 ,获得积分10
2秒前
shi hui应助冬瓜炖排骨采纳,获得10
2秒前
3秒前
dyh6802发布了新的文献求助10
3秒前
冷静雅青发布了新的文献求助10
3秒前
CipherSage应助猪猪hero采纳,获得10
4秒前
领导范儿应助不凡采纳,获得30
4秒前
顾矜应助坚定的亦绿采纳,获得10
5秒前
5秒前
yu完成签到,获得积分10
5秒前
Chris完成签到,获得积分10
6秒前
cookie发布了新的文献求助10
7秒前
胖仔完成签到,获得积分10
7秒前
Chan0501完成签到,获得积分10
7秒前
8秒前
9秒前
9秒前
duxinyue发布了新的文献求助10
9秒前
汉堡转转转完成签到,获得积分10
10秒前
喵酱发布了新的文献求助30
10秒前
6666完成签到,获得积分10
10秒前
研友_VZG7GZ应助灵巧荆采纳,获得10
11秒前
wjn完成签到,获得积分10
11秒前
12秒前
竹子完成签到,获得积分10
12秒前
MAKEYF完成签到 ,获得积分10
12秒前
13秒前
Owen应助猪猪hero采纳,获得10
13秒前
14秒前
CipherSage应助海棠yiyi采纳,获得50
15秒前
Khr1stINK发布了新的文献求助10
15秒前
15秒前
脑洞疼应助卡卡采纳,获得10
15秒前
15秒前
Rrr发布了新的文献求助10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794