Prediction of soil organic matter content based on characteristic band selection method

预处理器 选择(遗传算法) 内容(测量理论) 计算机科学 化学 数据预处理 模式识别(心理学) 特征选择 人工智能 偏最小二乘回归 生物系统 数学 机器学习 数学分析 生物
作者
Shugang Xie,Fangjun Ding,Shigeng Chen,Xi Wang,Yuhuan Li,Ke Ma
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:273: 120949-120949 被引量:53
标识
DOI:10.1016/j.saa.2022.120949
摘要

Soil organic matter (SOM) is a key index for evaluating soil fertility and plays a vital role in the terrestrial carbon cycle. Visible and near-infrared (Vis-NIR) spectroscopy is an effective method for determining soil properties and is often used to predict SOM content. However, the key prerequisite for effective prediction of SOM content by Vis-NIR spectroscopy lies in the selection of appropriate preprocessing methods and effective data mining techniques. Therefore, in this study, six commonly used spectral preprocessing methods and effective characteristic band selection methods were selected to process the spectrum to predict SOM content. This study aims to determine a stable spectral preprocessing method and explore the predictive performance of different characteristic band selection methods. The results showed that: (i) The first derivative (FD) is the most stable spectral preprocessing method that can effectively improve the spectral characteristic information and the prediction effect of the model. (ii) The prediction effect of SOM content based on characteristic band selection methods is generally better than the full-spectra data. (iii) The precision of FD preprocessing spectrum combined with successive projections algorithm (SPA) in the partial least square regression prediction model of SOM content is the best. (iv) Although the prediction effect of the model based on the optimal band combination algorithm is slightly lower than that of SPA, it shows stable prediction performance, which provides a feasible method for SOM content prediction. In summary, the characteristic band selection method combined with FD can significantly improve the prediction accuracy of SOM content.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
KaleemUllah完成签到,获得积分10
刚刚
1秒前
1秒前
Jasper应助冰海采纳,获得10
2秒前
4秒前
4秒前
端庄雅柔发布了新的文献求助10
4秒前
4秒前
zzz发布了新的文献求助10
4秒前
OnlyHarbour发布了新的文献求助10
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
Orange应助科研通管家采纳,获得10
6秒前
华仔应助科研通管家采纳,获得10
6秒前
科目三应助科研通管家采纳,获得10
7秒前
7秒前
浮游应助科研通管家采纳,获得10
7秒前
Twonej应助科研通管家采纳,获得30
7秒前
Akim应助科研通管家采纳,获得10
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
wanci应助科研通管家采纳,获得10
7秒前
Owen应助科研通管家采纳,获得10
7秒前
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
Twonej应助科研通管家采纳,获得30
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
Redback应助科研通管家采纳,获得10
7秒前
wanci应助科研通管家采纳,获得10
7秒前
科研通AI6应助梁jj采纳,获得10
7秒前
7秒前
乐乐应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675369
求助须知:如何正确求助?哪些是违规求助? 4945575
关于积分的说明 15152710
捐赠科研通 4834585
什么是DOI,文献DOI怎么找? 2589541
邀请新用户注册赠送积分活动 1543247
关于科研通互助平台的介绍 1501131