已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prediction of soil organic matter content based on characteristic band selection method

预处理器 选择(遗传算法) 内容(测量理论) 计算机科学 数据预处理 模式识别(心理学) 特征选择 人工智能 数据挖掘 数学 数学分析
作者
Shugang Xie,Fangjun Ding,Shigeng Chen,Xi Wang,Yuhuan Li,Ke Ma
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:273: 120949-120949 被引量:35
标识
DOI:10.1016/j.saa.2022.120949
摘要

Soil organic matter (SOM) is a key index for evaluating soil fertility and plays a vital role in the terrestrial carbon cycle. Visible and near-infrared (Vis-NIR) spectroscopy is an effective method for determining soil properties and is often used to predict SOM content. However, the key prerequisite for effective prediction of SOM content by Vis-NIR spectroscopy lies in the selection of appropriate preprocessing methods and effective data mining techniques. Therefore, in this study, six commonly used spectral preprocessing methods and effective characteristic band selection methods were selected to process the spectrum to predict SOM content. This study aims to determine a stable spectral preprocessing method and explore the predictive performance of different characteristic band selection methods. The results showed that: (i) The first derivative (FD) is the most stable spectral preprocessing method that can effectively improve the spectral characteristic information and the prediction effect of the model. (ii) The prediction effect of SOM content based on characteristic band selection methods is generally better than the full-spectra data. (iii) The precision of FD preprocessing spectrum combined with successive projections algorithm (SPA) in the partial least square regression prediction model of SOM content is the best. (iv) Although the prediction effect of the model based on the optimal band combination algorithm is slightly lower than that of SPA, it shows stable prediction performance, which provides a feasible method for SOM content prediction. In summary, the characteristic band selection method combined with FD can significantly improve the prediction accuracy of SOM content.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
keyantong发布了新的文献求助10
1秒前
2秒前
2秒前
华仔应助科研通管家采纳,获得10
2秒前
6秒前
稳重惜灵发布了新的文献求助10
7秒前
7秒前
10秒前
nieinei完成签到 ,获得积分10
16秒前
栀夏完成签到,获得积分10
17秒前
17秒前
domingo发布了新的文献求助10
19秒前
Cosmosurfer完成签到,获得积分10
20秒前
hsr_eye发布了新的文献求助10
22秒前
gstaihn完成签到,获得积分10
23秒前
domingo完成签到,获得积分10
28秒前
yuyuyu完成签到,获得积分10
33秒前
37秒前
我爱物理完成签到,获得积分10
45秒前
现代的半兰完成签到,获得积分10
46秒前
47秒前
NexusExplorer应助hsr_eye采纳,获得10
49秒前
bkagyin应助现代的半兰采纳,获得10
50秒前
漂亮白枫发布了新的文献求助10
52秒前
小蘑菇应助哈哈哈哈采纳,获得10
54秒前
55秒前
量子星尘发布了新的文献求助10
57秒前
bkagyin应助漂亮白枫采纳,获得10
58秒前
硕小牛完成签到,获得积分10
59秒前
猪猪hero应助LLY采纳,获得10
59秒前
Jay发布了新的文献求助10
1分钟前
1分钟前
1分钟前
彼岸花开发布了新的文献求助10
1分钟前
Nakacoke77完成签到,获得积分10
1分钟前
轻松尔蝶完成签到 ,获得积分10
1分钟前
科研通AI5应助Jay采纳,获得10
1分钟前
丘比特应助Jay采纳,获得10
1分钟前
yx_cheng应助Jay采纳,获得10
1分钟前
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976600
求助须知:如何正确求助?哪些是违规求助? 3520674
关于积分的说明 11204470
捐赠科研通 3257316
什么是DOI,文献DOI怎么找? 1798683
邀请新用户注册赠送积分活动 877861
科研通“疑难数据库(出版商)”最低求助积分说明 806595