Prediction of soil organic matter content based on characteristic band selection method

预处理器 选择(遗传算法) 内容(测量理论) 计算机科学 数据预处理 模式识别(心理学) 特征选择 人工智能 数据挖掘 数学 数学分析
作者
Shugang Xie,Fangjun Ding,Shigeng Chen,Xi Wang,Yuhuan Li,Ke Ma
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:273: 120949-120949 被引量:35
标识
DOI:10.1016/j.saa.2022.120949
摘要

Soil organic matter (SOM) is a key index for evaluating soil fertility and plays a vital role in the terrestrial carbon cycle. Visible and near-infrared (Vis-NIR) spectroscopy is an effective method for determining soil properties and is often used to predict SOM content. However, the key prerequisite for effective prediction of SOM content by Vis-NIR spectroscopy lies in the selection of appropriate preprocessing methods and effective data mining techniques. Therefore, in this study, six commonly used spectral preprocessing methods and effective characteristic band selection methods were selected to process the spectrum to predict SOM content. This study aims to determine a stable spectral preprocessing method and explore the predictive performance of different characteristic band selection methods. The results showed that: (i) The first derivative (FD) is the most stable spectral preprocessing method that can effectively improve the spectral characteristic information and the prediction effect of the model. (ii) The prediction effect of SOM content based on characteristic band selection methods is generally better than the full-spectra data. (iii) The precision of FD preprocessing spectrum combined with successive projections algorithm (SPA) in the partial least square regression prediction model of SOM content is the best. (iv) Although the prediction effect of the model based on the optimal band combination algorithm is slightly lower than that of SPA, it shows stable prediction performance, which provides a feasible method for SOM content prediction. In summary, the characteristic band selection method combined with FD can significantly improve the prediction accuracy of SOM content.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤恳觅珍发布了新的文献求助10
1秒前
不安的秋白完成签到,获得积分10
1秒前
勿忸发布了新的文献求助10
2秒前
斯文以蓝发布了新的文献求助10
3秒前
最後まで发布了新的文献求助10
3秒前
收拾收拾完成签到,获得积分10
3秒前
无言完成签到,获得积分10
4秒前
烂漫的筮发布了新的文献求助10
4秒前
冯涛发布了新的文献求助10
4秒前
zz发布了新的文献求助10
5秒前
5秒前
我是老大应助WQ采纳,获得10
6秒前
曦之南。完成签到,获得积分10
6秒前
cwx完成签到,获得积分10
6秒前
虚幻小丸子完成签到 ,获得积分10
6秒前
6秒前
科目三应助小土豆采纳,获得10
6秒前
6秒前
龍fei完成签到,获得积分10
6秒前
7秒前
NexusExplorer应助璟晔采纳,获得10
7秒前
wys关闭了wys文献求助
7秒前
7秒前
自觉的傲薇应助哈尼采纳,获得10
8秒前
英俊的铭应助qiuli采纳,获得10
8秒前
收拾收拾发布了新的文献求助30
8秒前
liz完成签到,获得积分10
9秒前
9秒前
范德萨范德萨完成签到 ,获得积分10
9秒前
沉默的若云完成签到,获得积分10
9秒前
bkagyin应助LIUjun采纳,获得10
9秒前
善学以致用应助凶狠的蓉采纳,获得10
10秒前
贺雪发布了新的文献求助10
10秒前
10秒前
11秒前
哈哈大王完成签到 ,获得积分10
11秒前
南敏株发布了新的文献求助10
11秒前
852应助Yoo.采纳,获得10
11秒前
哇卡哇卡完成签到 ,获得积分10
11秒前
小羊发布了新的文献求助10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968964
求助须知:如何正确求助?哪些是违规求助? 3513877
关于积分的说明 11170569
捐赠科研通 3249201
什么是DOI,文献DOI怎么找? 1794692
邀请新用户注册赠送积分活动 875297
科研通“疑难数据库(出版商)”最低求助积分说明 804755