Inflation Improves Graph Neural Networks

计算机科学 图形 理论计算机科学 马尔可夫链 平滑的 卷积(计算机科学) 算法 人工智能 人工神经网络 机器学习 计算机视觉
作者
Dongxiao He,Rui Gong,Xiaobao Wang,Di Jin,Yuxiao Huang,Wenjun Wang
标识
DOI:10.1145/3485447.3512193
摘要

Graph neural networks (GNNs) have gained significant success in graph representation learning and become the go-to approach for many graph-based tasks. Despite their effectiveness, the performance of GNNs is known to decline gradually as the number of layers increases. This attenuation is mainly caused by noise propagation, which refers to the useless or negative information propagated (directly or indirectly) from other nodes during the multi-layer graph convolution for node representation learning. This noise increases more severely as the layers of GNNs deepen, which is also a main reason of over-smoothing. In this paper, we propose a new convolution strategy for GNNs to address this problem via suppressing the noise propagation. Specifically, we first find that the feature propagation process of GNNs can be taken as a Markov chain. And then, based on the idea of Markov clustering, we introduce a new graph inflation layer (i.e., using a power function over the distribution) into GNNs to prevent noise propagating from local neighbourhoods to the whole graph with the increase of network layers. Our method is simple in design, which does not require any changes on the original basis and therefore can be easily extended. We conduct extensive experiments on real-world networks and have a stable improved performance as the network depth increases over existing GNNs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助苍鹰采纳,获得30
1秒前
1秒前
正直天佑完成签到,获得积分10
3秒前
3秒前
丁又菡完成签到,获得积分10
4秒前
佳AOAOAO完成签到,获得积分20
4秒前
深情安青应助maybe采纳,获得10
5秒前
薄荷完成签到,获得积分10
5秒前
SciGPT应助难过的谷芹采纳,获得30
7秒前
柳叶刀完成签到 ,获得积分10
8秒前
短歌终发布了新的文献求助10
10秒前
13秒前
彭于晏应助君君采纳,获得30
13秒前
脑洞疼应助君君采纳,获得10
13秒前
pluto应助君君采纳,获得10
13秒前
情怀应助君君采纳,获得10
14秒前
16秒前
善良耳机完成签到,获得积分10
17秒前
Vincent1990发布了新的文献求助10
17秒前
19秒前
20秒前
汉堡包应助艺涵采纳,获得10
20秒前
一落成殇完成签到,获得积分10
21秒前
22秒前
24秒前
26秒前
从容甜瓜完成签到 ,获得积分10
27秒前
27秒前
27秒前
27秒前
郝老头完成签到,获得积分10
28秒前
yx_cheng应助懦弱的含芙采纳,获得10
28秒前
PL发布了新的文献求助10
29秒前
Koi发布了新的文献求助10
31秒前
能干的茗发布了新的文献求助10
31秒前
Shuaibin_Pei发布了新的文献求助10
31秒前
33秒前
34秒前
37秒前
喔喔佳佳完成签到 ,获得积分10
38秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967386
求助须知:如何正确求助?哪些是违规求助? 3512667
关于积分的说明 11164479
捐赠科研通 3247536
什么是DOI,文献DOI怎么找? 1793911
邀请新用户注册赠送积分活动 874758
科研通“疑难数据库(出版商)”最低求助积分说明 804498