Inflation Improves Graph Neural Networks

计算机科学 图形 理论计算机科学 马尔可夫链 平滑的 卷积(计算机科学) 算法 人工智能 人工神经网络 机器学习 计算机视觉
作者
Dongxiao He,Rui Gong,Xiaobao Wang,Di Jin,Yuxiao Huang,Wenjun Wang
标识
DOI:10.1145/3485447.3512193
摘要

Graph neural networks (GNNs) have gained significant success in graph representation learning and become the go-to approach for many graph-based tasks. Despite their effectiveness, the performance of GNNs is known to decline gradually as the number of layers increases. This attenuation is mainly caused by noise propagation, which refers to the useless or negative information propagated (directly or indirectly) from other nodes during the multi-layer graph convolution for node representation learning. This noise increases more severely as the layers of GNNs deepen, which is also a main reason of over-smoothing. In this paper, we propose a new convolution strategy for GNNs to address this problem via suppressing the noise propagation. Specifically, we first find that the feature propagation process of GNNs can be taken as a Markov chain. And then, based on the idea of Markov clustering, we introduce a new graph inflation layer (i.e., using a power function over the distribution) into GNNs to prevent noise propagating from local neighbourhoods to the whole graph with the increase of network layers. Our method is simple in design, which does not require any changes on the original basis and therefore can be easily extended. We conduct extensive experiments on real-world networks and have a stable improved performance as the network depth increases over existing GNNs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明天会更好完成签到,获得积分20
1秒前
1秒前
1秒前
李成哲完成签到,获得积分10
1秒前
1秒前
BeSideWorld发布了新的文献求助10
1秒前
尧肙发布了新的文献求助10
2秒前
研友_VZG7GZ应助金咪采纳,获得10
2秒前
脑洞疼应助朴素的妙旋采纳,获得10
3秒前
alazka完成签到,获得积分20
3秒前
朴实的手套完成签到,获得积分10
3秒前
Flipped完成签到,获得积分10
3秒前
3秒前
端庄荔枝完成签到,获得积分20
3秒前
桥豆麻袋完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
碧蓝老黑完成签到,获得积分10
4秒前
5秒前
xx发布了新的文献求助10
5秒前
梅梅好漂亮完成签到,获得积分10
5秒前
5秒前
烟花应助猪猪hero采纳,获得10
6秒前
7秒前
7秒前
7秒前
传统的孤丝完成签到 ,获得积分10
8秒前
8秒前
alazka发布了新的文献求助10
8秒前
科研通AI6应助MG采纳,获得10
8秒前
苏言止发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
9秒前
ztgzttt发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629758
求助须知:如何正确求助?哪些是违规求助? 4720546
关于积分的说明 14970558
捐赠科研通 4787741
什么是DOI,文献DOI怎么找? 2556498
邀请新用户注册赠送积分活动 1517659
关于科研通互助平台的介绍 1478271