Inflation Improves Graph Neural Networks

计算机科学 图形 理论计算机科学 马尔可夫链 平滑的 卷积(计算机科学) 算法 人工智能 人工神经网络 机器学习 计算机视觉
作者
Dongxiao He,Rui Gong,Xiaobao Wang,Di Jin,Yuxiao Huang,Wenjun Wang
标识
DOI:10.1145/3485447.3512193
摘要

Graph neural networks (GNNs) have gained significant success in graph representation learning and become the go-to approach for many graph-based tasks. Despite their effectiveness, the performance of GNNs is known to decline gradually as the number of layers increases. This attenuation is mainly caused by noise propagation, which refers to the useless or negative information propagated (directly or indirectly) from other nodes during the multi-layer graph convolution for node representation learning. This noise increases more severely as the layers of GNNs deepen, which is also a main reason of over-smoothing. In this paper, we propose a new convolution strategy for GNNs to address this problem via suppressing the noise propagation. Specifically, we first find that the feature propagation process of GNNs can be taken as a Markov chain. And then, based on the idea of Markov clustering, we introduce a new graph inflation layer (i.e., using a power function over the distribution) into GNNs to prevent noise propagating from local neighbourhoods to the whole graph with the increase of network layers. Our method is simple in design, which does not require any changes on the original basis and therefore can be easily extended. We conduct extensive experiments on real-world networks and have a stable improved performance as the network depth increases over existing GNNs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
阿氏之光完成签到,获得积分10
1秒前
2秒前
3秒前
孤独雨梅发布了新的文献求助10
3秒前
4秒前
支半雪发布了新的文献求助10
4秒前
特来骑发布了新的文献求助10
5秒前
zino发布了新的文献求助30
7秒前
ddsvdv发布了新的文献求助10
8秒前
zhangfuchao完成签到,获得积分10
10秒前
李某完成签到 ,获得积分20
11秒前
JorieZ完成签到,获得积分10
12秒前
香蕉觅云应助细心蚂蚁采纳,获得10
12秒前
12秒前
打打应助嘎嘎采纳,获得10
12秒前
特来骑完成签到,获得积分10
13秒前
cctv18应助刻苦的幻巧采纳,获得30
13秒前
14秒前
kxdxng完成签到 ,获得积分10
15秒前
小锅完成签到 ,获得积分10
16秒前
支半雪发布了新的文献求助10
17秒前
18秒前
细心蚂蚁完成签到,获得积分10
20秒前
JamesPei应助Georges-09采纳,获得10
22秒前
22秒前
happy发布了新的文献求助10
23秒前
我一拳打树上完成签到,获得积分10
26秒前
Painkiller_完成签到,获得积分10
26秒前
失眠绿草发布了新的文献求助10
26秒前
27秒前
Jiang 小白完成签到,获得积分10
31秒前
cctv18应助风中的嘉熙采纳,获得10
31秒前
myf发布了新的文献求助10
31秒前
科研通AI2S应助学渣路过采纳,获得10
33秒前
34秒前
happy完成签到,获得积分10
35秒前
38秒前
66完成签到,获得积分10
41秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Handbook of Prejudice, Stereotyping, and Discrimination (3rd Ed. 2024) 1200
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3243639
求助须知:如何正确求助?哪些是违规求助? 2887516
关于积分的说明 8248820
捐赠科研通 2556206
什么是DOI,文献DOI怎么找? 1384291
科研通“疑难数据库(出版商)”最低求助积分说明 649827
邀请新用户注册赠送积分活动 625760