Multifunctional wood composites based on Camellia oleifera shell with harsh‐weather and self‐mildew resistance

材料科学 油茶 复合材料 复合数 壳体(结构) 苯酚 霉病 植物 化学 有机化学 生物
作者
Guoliang Chen,Hanzhang Wang,Shifeng Zhang,Wei Zhang,Hong Wu,Changzhu Li,Zhihong Xiao
出处
期刊:Polymer Composites [Wiley]
卷期号:43 (6): 3531-3543 被引量:9
标识
DOI:10.1002/pc.26634
摘要

Abstract Camellia oleifera shell is rich in lignin and tea saponin and other natural active substances, and it is used to directly prepare fuel and biochar, which are low‐value applications. Inspired by the tea oil fruit shell, a new type of wood‐based composite was designed, which was bonded between inner layers and coated on the surface with Camellia oleifera shell‐based phenolic resin through a one‐step manufacturing process. The acid catalyst type, reaction time, and substitution ratios ( Camellia oleifera shell/phenol) were used to optimize the formulation and process of Camellia oleifera shell phenolic resin. The chemical structure, wet bonding strength, harsh‐weather resistance, thermal properties, and flame resistance of the composites ( Camellia oleifera shell phenolic resin surface coated plywood [CSPCPs]) were evaluated. The results indicated that the CSPCPs showed better‐wet bonding strength and thermal properties and harsh‐weather resistance compared with the common uncoated plywood. CSPCP‐3 presented the maximum wet bonding strength of 1.63 MPa. The limiting oxygen indexes of the CSPCPs were all higher than that of common plywood. All CSPCPs displayed excellent acid rain corrosion resistance, with little mass loss under simulated acid rain conditions. Grayscale was used to compare the samples' color to assess their self‐mildew resistance. As the amount of shell increased, the mold resistance of CSPCPs increased. CSPCP‐3 showed excellent comprehensive performance and can be a multifunctional wood composite suitable for outdoor applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张张包发布了新的文献求助10
刚刚
jackdu发布了新的文献求助10
刚刚
顾矜应助morena采纳,获得10
1秒前
等等完成签到,获得积分20
1秒前
无私的易蓉完成签到,获得积分10
1秒前
香蕉觅云应助干雅柏采纳,获得10
1秒前
2秒前
小二郎应助nlm采纳,获得10
2秒前
kevin发布了新的文献求助10
2秒前
2秒前
可研发布了新的文献求助10
2秒前
wanci应助森森采纳,获得10
2秒前
恋空发布了新的文献求助10
3秒前
3秒前
4秒前
didi发布了新的文献求助30
5秒前
田小胖完成签到,获得积分10
5秒前
5秒前
自觉远山完成签到 ,获得积分10
5秒前
5秒前
5秒前
彩色的襄完成签到 ,获得积分10
5秒前
干雅柏完成签到,获得积分10
5秒前
6秒前
怕黑荠应助WZY采纳,获得10
7秒前
科研岗发布了新的文献求助10
7秒前
聪明乐巧完成签到,获得积分10
7秒前
JYY完成签到 ,获得积分10
8秒前
可研完成签到,获得积分10
8秒前
8秒前
9秒前
科研通AI5应助yaoyao采纳,获得10
9秒前
10秒前
轩辕唯雪发布了新的文献求助10
10秒前
叽里呱啦发布了新的文献求助10
10秒前
ZRBY发布了新的文献求助10
11秒前
天天快乐应助MinggniM采纳,获得30
12秒前
13秒前
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3560985
求助须知:如何正确求助?哪些是违规求助? 3134744
关于积分的说明 9409650
捐赠科研通 2834980
什么是DOI,文献DOI怎么找? 1558372
邀请新用户注册赠送积分活动 728097
科研通“疑难数据库(出版商)”最低求助积分说明 716686