Adaptive multimodal fusion with attention guided deep supervision net for grading hepatocellular carcinoma.

计算机科学 分级(工程) 人工智能 融合 串联(数学) 特征(语言学) 模式识别(心理学) 情态动词 多模态 图像融合 机器学习
作者
Shangxuan Li,Yanyan Xie,Guangyi Wang,Lijuan Zhang,Wu Zhou
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:PP
标识
DOI:10.1109/jbhi.2022.3161466
摘要

Multimodal medical imaging plays a crucial role in the diagnosis and characterization of lesions. However, challenges remain in lesion characterization based on multimodal feature fusion. First, current fusion methods have not thoroughly studied the relative importance of characterization modals. In addition, multimodal feature fusion cannot provide the contribution of different modal information to inform critical decision-making. In this study, we propose an adaptive multimodal fusion method with an attention-guided deep supervision net for grading hepatocellular carcinoma (HCC). Specifically, our proposed framework comprises two modules: attention-based adaptive feature fusion and attention-guided deep supervision net. The former uses the attention mechanism at the feature fusion level to generate weights for adaptive feature concatenation and balances the importance of features among various modals. The latter uses the weight generated by the attention mechanism as the weight coefficient of each loss to balance the contribution of the corresponding modal to the total loss function. The experimental results of grading clinical HCC with contrast-enhanced MR demonstrated the effectiveness of the proposed method. A significant performance improvement was achieved compared with existing fusion methods. In addition, the weight coefficient of attention in multimodal fusion has demonstrated great significance in clinical interpretation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HUAN完成签到,获得积分10
刚刚
儒雅卿发布了新的文献求助10
刚刚
幽默服饰完成签到,获得积分10
1秒前
坚定幻嫣发布了新的文献求助10
3秒前
可爱的函函应助qingxiao采纳,获得10
4秒前
上官若男应助叶子采纳,获得10
4秒前
ding应助碧蓝的初南采纳,获得10
4秒前
隔壁家完成签到,获得积分10
5秒前
6秒前
6秒前
谨慎不二完成签到,获得积分20
8秒前
李健应助科研通管家采纳,获得10
8秒前
领导范儿应助科研通管家采纳,获得10
8秒前
桐桐应助wa_wa_wa采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
大模型应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
9秒前
5515713完成签到,获得积分10
10秒前
柯擎汉完成签到,获得积分10
11秒前
AptRank完成签到,获得积分10
12秒前
Owen应助欢呼宛白采纳,获得10
12秒前
12秒前
谨慎乌完成签到,获得积分10
18秒前
领导范儿应助nanyuan123采纳,获得30
19秒前
nonkul发布了新的文献求助10
20秒前
打打应助执着的若灵采纳,获得10
20秒前
在水一方应助美丽的听白采纳,获得10
21秒前
22秒前
22秒前
22秒前
23秒前
努力搬砖毕业完成签到 ,获得积分10
23秒前
GodMG完成签到,获得积分10
23秒前
熊熊面包应助橙子采纳,获得10
24秒前
线条完成签到 ,获得积分10
24秒前
科目三应助饼大王采纳,获得10
24秒前
情怀应助帕克采纳,获得10
24秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124803
求助须知:如何正确求助?哪些是违规求助? 2775148
关于积分的说明 7725553
捐赠科研通 2430633
什么是DOI,文献DOI怎么找? 1291291
科研通“疑难数据库(出版商)”最低求助积分说明 622121
版权声明 600328