材料科学
阳极
锂(药物)
电极
原位
金属锂
氧化物
薄膜
金属
固态
合金
石墨烯
纳米技术
冶金
工程物理
工程类
内分泌学
物理化学
气象学
化学
物理
医学
作者
Jiaqi Zhu,Dan Cai,Jing Wang,Xiuli Wang,Xinhui Xia,Changdong Gu,J.P. Tu
标识
DOI:10.1016/j.ensm.2022.05.001
摘要
• A 40 µm thick composite lithium anode is proposed. • In-situ generated Li 3 N (inside electrode) and Li-Al alloy nucleation sites mitigate the dendrite growth. • The Li 3 N-modified solid electrolyte interphase (SEI) enhances the interfacial stability. • The solid-state symmetric cell cycles over 2100 h at 0.2 mA cm −2 /0.2 mAh cm −2 with a low voltage hysteresis (<10 mV). Optimization of lithium metal anode is a pivotal part in facilitating the evolution of next-generation high energy density solid-state lithium metal batteries (LMBs). However, the practical application of lithium anode in solid-state LMBs is limited by uncontrollable dendrite growth and the poor interfacial contact with solid electrolyte. Herein, a 40 µm thin lithium composite anode based on the AlN-embedded reduced graphene oxide (rGO) scaffold synthesized via one-step molten lithium infusion is proposed. The resulting lithiophilic Li-Al alloy and high ion-conductive Li 3 N in situ constructed the lithium ion diffusing highways inside electrode, enabling a well-oriented Li deposition and effectively inhibiting the dendrite growth. Combined with in-situ polymerization and Li 3 N-modified solid electrolyte interphase (SEI), the composite anodes can prolong the lifespan of symmetric cell to 2100 h at 0.2 mA cm −2 /0.2 mAh cm −2 in carbonate-based solid polymer electrolytes. Moreover, LAG||LiFePO 4 full cells also excelled in cycling capability and rate performance. This modified electrode offers a promising synergistic solution for designing high-performance solid-state LMBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI