In-situ generated Li3N/Li-Al alloy in reduced graphene oxide framework optimizing ultra-thin lithium metal electrode for solid-state batteries

材料科学 阳极 锂(药物) 电极 原位 金属锂 氧化物 薄膜 金属 固态 合金 石墨烯 纳米技术 冶金 工程物理 工程类 内分泌学 物理化学 气象学 化学 物理 医学
作者
Jiaqi Zhu,Dan Cai,Jing Wang,Xiuli Wang,Xinhui Xia,Changdong Gu,J.P. Tu
出处
期刊:Energy Storage Materials [Elsevier BV]
卷期号:49: 546-554 被引量:38
标识
DOI:10.1016/j.ensm.2022.05.001
摘要

• A 40 µm thick composite lithium anode is proposed. • In-situ generated Li 3 N (inside electrode) and Li-Al alloy nucleation sites mitigate the dendrite growth. • The Li 3 N-modified solid electrolyte interphase (SEI) enhances the interfacial stability. • The solid-state symmetric cell cycles over 2100 h at 0.2 mA cm −2 /0.2 mAh cm −2 with a low voltage hysteresis (<10 mV). Optimization of lithium metal anode is a pivotal part in facilitating the evolution of next-generation high energy density solid-state lithium metal batteries (LMBs). However, the practical application of lithium anode in solid-state LMBs is limited by uncontrollable dendrite growth and the poor interfacial contact with solid electrolyte. Herein, a 40 µm thin lithium composite anode based on the AlN-embedded reduced graphene oxide (rGO) scaffold synthesized via one-step molten lithium infusion is proposed. The resulting lithiophilic Li-Al alloy and high ion-conductive Li 3 N in situ constructed the lithium ion diffusing highways inside electrode, enabling a well-oriented Li deposition and effectively inhibiting the dendrite growth. Combined with in-situ polymerization and Li 3 N-modified solid electrolyte interphase (SEI), the composite anodes can prolong the lifespan of symmetric cell to 2100 h at 0.2 mA cm −2 /0.2 mAh cm −2 in carbonate-based solid polymer electrolytes. Moreover, LAG||LiFePO 4 full cells also excelled in cycling capability and rate performance. This modified electrode offers a promising synergistic solution for designing high-performance solid-state LMBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
研究牲发布了新的文献求助10
1秒前
2秒前
zhh完成签到,获得积分20
2秒前
2秒前
ccc完成签到 ,获得积分10
2秒前
romi8kelly发布了新的文献求助30
3秒前
桐桐应助研究牲采纳,获得10
5秒前
ccorange发布了新的文献求助10
5秒前
li发布了新的文献求助10
5秒前
8秒前
qy完成签到,获得积分10
9秒前
寒冷苗条应助之和采纳,获得10
12秒前
几时有发布了新的文献求助10
13秒前
Fonexy完成签到,获得积分10
13秒前
14秒前
15秒前
小二郎应助jolil采纳,获得10
16秒前
17秒前
zz发布了新的文献求助10
17秒前
17秒前
wangyyan发布了新的文献求助10
18秒前
18秒前
机灵柚子应助几时有采纳,获得10
18秒前
19秒前
孔师发布了新的文献求助10
20秒前
斯文败类应助lee采纳,获得10
21秒前
22秒前
jinxli发布了新的文献求助10
22秒前
22秒前
22秒前
Zeming_Pan完成签到,获得积分10
23秒前
Owen应助li采纳,获得10
24秒前
闪闪的妙之完成签到,获得积分10
24秒前
Reese发布了新的文献求助10
24秒前
25秒前
25秒前
唯爱薇儿完成签到,获得积分10
26秒前
26秒前
Orange应助VV采纳,获得10
27秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737792
求助须知:如何正确求助?哪些是违规求助? 3281460
关于积分的说明 10025330
捐赠科研通 2998147
什么是DOI,文献DOI怎么找? 1645122
邀请新用户注册赠送积分活动 782547
科研通“疑难数据库(出版商)”最低求助积分说明 749835