In-situ generated Li3N/Li-Al alloy in reduced graphene oxide framework optimizing ultra-thin lithium metal electrode for solid-state batteries

材料科学 阳极 锂(药物) 电极 原位 金属锂 氧化物 薄膜 金属 固态 合金 石墨烯 纳米技术 冶金 工程物理 物理 气象学 医学 化学 工程类 物理化学 内分泌学
作者
Jiaqi Zhu,Dan Cai,Jingru Li,Xiuli Wang,Xinhui Xia,Changdong Gu,J.P. Tu
出处
期刊:Energy Storage Materials [Elsevier]
卷期号:49: 546-554 被引量:58
标识
DOI:10.1016/j.ensm.2022.05.001
摘要

• A 40 µm thick composite lithium anode is proposed. • In-situ generated Li 3 N (inside electrode) and Li-Al alloy nucleation sites mitigate the dendrite growth. • The Li 3 N-modified solid electrolyte interphase (SEI) enhances the interfacial stability. • The solid-state symmetric cell cycles over 2100 h at 0.2 mA cm −2 /0.2 mAh cm −2 with a low voltage hysteresis (<10 mV). Optimization of lithium metal anode is a pivotal part in facilitating the evolution of next-generation high energy density solid-state lithium metal batteries (LMBs). However, the practical application of lithium anode in solid-state LMBs is limited by uncontrollable dendrite growth and the poor interfacial contact with solid electrolyte. Herein, a 40 µm thin lithium composite anode based on the AlN-embedded reduced graphene oxide (rGO) scaffold synthesized via one-step molten lithium infusion is proposed. The resulting lithiophilic Li-Al alloy and high ion-conductive Li 3 N in situ constructed the lithium ion diffusing highways inside electrode, enabling a well-oriented Li deposition and effectively inhibiting the dendrite growth. Combined with in-situ polymerization and Li 3 N-modified solid electrolyte interphase (SEI), the composite anodes can prolong the lifespan of symmetric cell to 2100 h at 0.2 mA cm −2 /0.2 mAh cm −2 in carbonate-based solid polymer electrolytes. Moreover, LAG||LiFePO 4 full cells also excelled in cycling capability and rate performance. This modified electrode offers a promising synergistic solution for designing high-performance solid-state LMBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助keke采纳,获得10
刚刚
刚刚
Lina完成签到,获得积分10
刚刚
orixero应助yuyu采纳,获得10
刚刚
小羊发布了新的文献求助10
1秒前
XYN发布了新的文献求助30
1秒前
打打应助huangchengzi采纳,获得10
2秒前
asdfzxcv应助阳静采纳,获得10
2秒前
shirui0906284完成签到 ,获得积分10
3秒前
白踏歌发布了新的文献求助10
3秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
干净寻冬应助xbxssd采纳,获得10
4秒前
4秒前
重要的灵珊完成签到,获得积分10
4秒前
汉堡包应助喜悦的唇膏采纳,获得10
5秒前
科研通AI6应助freaklhx采纳,获得10
5秒前
科研通AI6应助闲听花落采纳,获得10
5秒前
AY完成签到 ,获得积分10
5秒前
wql完成签到,获得积分10
5秒前
朴素的士晋完成签到 ,获得积分10
5秒前
6秒前
刘青完成签到,获得积分10
6秒前
留胡子的迎梦完成签到 ,获得积分10
6秒前
林夏发布了新的文献求助10
7秒前
7秒前
mooncake187发布了新的文献求助10
7秒前
8秒前
donwe完成签到,获得积分10
8秒前
8秒前
8秒前
小马甲应助HQQ采纳,获得10
8秒前
stone发布了新的文献求助10
9秒前
科研通AI6应助机灵大米采纳,获得10
9秒前
wanci应助果子采纳,获得10
9秒前
9秒前
可爱冬瓜完成签到,获得积分10
9秒前
zyy阔达雪珊完成签到,获得积分10
9秒前
KK发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646180
求助须知:如何正确求助?哪些是违规求助? 4770425
关于积分的说明 15033724
捐赠科研通 4804901
什么是DOI,文献DOI怎么找? 2569318
邀请新用户注册赠送积分活动 1526307
关于科研通互助平台的介绍 1485803