乙胺丁醇
异烟肼
卷曲霉素
阿米卡星
链霉素
结核分枝杆菌
卡那霉素
氧氟沙星
微生物学
莫西沙星
医学
抗药性
肺结核
抗生素
生物
环丙沙星
病理
作者
Xiaocui Wu,Guangkun Tan,Jinghui Yang,Yinjuan Guo,Chengchen Huang,Wei Sha,Fangyou Yu
标识
DOI:10.1016/j.ijid.2022.04.061
摘要
To evaluate the performance of nucleotide matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) in predicting the drug resistance of Mycobacterium tuberculosis.A total of 115 rifampin-resistant and 53 rifampin-susceptible tuberculosis (TB) clinical isolates were randomly selected from TB strains stored at -80℃ in the clinical laboratory of Shanghai Pulmonary Hospital. Nucleotide MALDI-TOF-MS was performed to predict the drug resistance using phenotypic susceptibility as the gold standard.The overall assay sensitivities and specificities of nucleotide MALDI-TOF-MS were 92.2% and 100.0% for rifampin, 90.9% and 98.6% for isoniazid, 71.4% and 81.2% for ethambutol, 85.1% and 93.1% for streptomycin, 94.0% and 100.0% for amikacin, 77.8% and 99.3% for kanamycin, 75.0% and 93.3% for ofloxacin, and 75.0% and 93.3% for moxifloxacin. The concordances between nucleotide MALDI-TOF-MS antimicrobial susceptibility testing (AST) and phenotypic AST were 94.6% (rifampin), 90.1% (isoniazid), 79.2% (ethambutol), 89.9% (streptomycin), 99.4% (amikacin), 97.0% (kanamycin), 88.1% (ofloxacin), and 88.0% (moxifloxacin).Nucleotide MALDI-TOF-MS could be a promising tool for rapid detection of Mycobacterium tuberculosis drug sensitivity to rifampin, isoniazid, ethambutol, streptomycin, amikacin, kanamycin, ofloxacin, and moxifloxacin.
科研通智能强力驱动
Strongly Powered by AbleSci AI