Dynamic Hand Gesture Recognition Using Improved Spatio-Temporal Graph Convolutional Network

计算机科学 手势 手势识别 人工智能 图形 模式识别(心理学) 光学(聚焦) 卷积(计算机科学) 卷积神经网络 计算机视觉 膨胀(度量空间) 人工神经网络 理论计算机科学 光学 物理 组合数学 数学
作者
Jae-Hun Song,Kyeongbo Kong,Suk-Ju Kang
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:32 (9): 6227-6239 被引量:2
标识
DOI:10.1109/tcsvt.2022.3165069
摘要

Hand gesture recognition is essential to human-computer interaction as the most natural way of communicating. Furthermore, with the development of 3D hand pose estimation technology and the performance improvement of low-cost depth cameras, skeleton-based dynamic hand gesture recognition has received much attention. This paper proposes a novel multi-stream improved spatio-temporal graph convolutional network (MS-ISTGCN) for skeleton-based dynamic hand gesture recognition. We adopt an adaptive spatial graph convolution that can learn the relationship between distant hand joints and propose an extended temporal graph convolution with multiple dilation rates that can extract informative temporal features from short to long periods. Furthermore, we add a new attention layer consisting of effective spatio-temporal attention and channel attention between the spatial and temporal graph convolution layers to find and focus on key features. Finally, we propose a multi-stream structure that feeds multiple data modalities (i.e., joints, bones, and motions) as inputs to improve performance using the ensemble technique. Each of the three-stream networks is independently trained and fused to predict the final hand gesture. The performance of the proposed method is verified through extensive experiments with two widely used public dynamic hand gesture datasets: SHREC’17 Track and DHG-14/28. Our proposed method achieves the highest recognition accuracy in various gesture categories for both datasets compared with state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陌君子筱完成签到,获得积分10
1秒前
1秒前
研友_VZG7GZ应助wewewew采纳,获得10
1秒前
Getlogger发布了新的文献求助10
1秒前
活泼盼夏发布了新的文献求助10
1秒前
1秒前
sekidesu发布了新的文献求助10
1秒前
xxqaq发布了新的文献求助10
1秒前
ty心明亮完成签到 ,获得积分10
2秒前
owl发布了新的文献求助10
2秒前
傲来国三少爷关注了科研通微信公众号
2秒前
gyh完成签到,获得积分10
3秒前
SongWhizz发布了新的文献求助10
3秒前
在水一方应助Ry采纳,获得10
4秒前
YI完成签到,获得积分10
4秒前
4秒前
4秒前
chichi应助北柠Irene采纳,获得10
5秒前
5秒前
5秒前
6秒前
郭桂桂完成签到,获得积分20
7秒前
家向松完成签到,获得积分10
7秒前
7秒前
丘比特应助lee1984612采纳,获得10
7秒前
7秒前
7秒前
dent强发布了新的文献求助10
8秒前
dd33完成签到,获得积分10
8秒前
上官若男应助小白采纳,获得10
8秒前
9秒前
文献啊文献完成签到,获得积分10
9秒前
Jasper应助Getlogger采纳,获得10
9秒前
SH发布了新的文献求助10
10秒前
风中莫英完成签到 ,获得积分10
10秒前
10秒前
魁拔蛮吉完成签到,获得积分10
11秒前
筒的信次方完成签到,获得积分10
11秒前
gyh发布了新的文献求助10
11秒前
11秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299039
求助须知:如何正确求助?哪些是违规求助? 2934095
关于积分的说明 8466867
捐赠科研通 2607468
什么是DOI,文献DOI怎么找? 1423751
科研通“疑难数据库(出版商)”最低求助积分说明 661677
邀请新用户注册赠送积分活动 645327