Fast-Fourier-Transform Enhanced Progressive Singular-Value-Decomposition Algorithm in Double Diagnostic Window Frame for Weak Arc Fault Detection

快速傅里叶变换 奇异值分解 算法 断层(地质) 窗口函数 帧(网络) 弧(几何) 计算机科学 傅里叶变换 故障检测与隔离 奇异值 数学 人工智能 物理 滤波器(信号处理) 数学分析 电信 计算机视觉 几何学 特征向量 量子力学 地震学 执行机构 地质学
作者
Yu‐Long Shen,Rong‐Jong Wai
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 39752-39768 被引量:19
标识
DOI:10.1109/access.2022.3165793
摘要

In this study, a novel method that progressively applies the fastest form of singular-value decomposition (SVD) to extract nonperiodic arc-fault features is proposed in order to pursue a competent solution for AC weak arc fault detection. First, bus-current signals of the normal state and the arc-fault state are collected and normalized before being processed by progressive SVD (PSVD) to detect the discrepancy brought by comparatively stronger arc-fault nonperiodic components expressed in singular values. To provide a more comprehensive feature extraction for an enhanced accuracy, the fast Fourier transform (FFT) is incorporated for accumulating periodic variations caused by arc faults. Because weak arc faults are difficult to distinguish from normal signals when they start, a double diagnostic window frame (DDWF) is designed to reduce false negative errors. The effectiveness of each partial design of the method is verified by experiments with numerous load types and current amplitudes conducted on an industrial experimental platform. The proposed PSVD-FFT algorithm has achieved a satisfactory and consistent performance measured by both the detection accuracy and diagnosis time in all of the experiments. The proposed method is on average at least 10% more accurate than the selected methods for a parallel comparison (in total more than a thousand experimental cases), with a satisfactory range of execution time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助欢喜小霸王采纳,获得10
刚刚
可爱的函函应助默默板凳采纳,获得10
1秒前
1秒前
2秒前
隐形曼青应助王德发采纳,获得10
2秒前
阿湛发布了新的文献求助10
2秒前
英俊的铭应助NXK采纳,获得10
2秒前
zho发布了新的文献求助10
3秒前
Jonathan发布了新的文献求助10
4秒前
费胜发布了新的文献求助10
4秒前
5秒前
科研通AI5应助三角梅采纳,获得10
5秒前
Ycc应助卡卡采纳,获得10
5秒前
阿湛完成签到,获得积分10
7秒前
wangwang2168完成签到,获得积分10
7秒前
maomao1986完成签到,获得积分10
8秒前
8秒前
Owen应助superspace采纳,获得10
9秒前
9秒前
17835152738完成签到,获得积分10
9秒前
欢喜小霸王完成签到,获得积分10
10秒前
10秒前
11秒前
lj完成签到 ,获得积分10
12秒前
wangwang2168发布了新的文献求助10
14秒前
14秒前
14秒前
15秒前
15秒前
昏睡的蟠桃应助JellyfishPsy采纳,获得50
15秒前
lyx2010完成签到,获得积分10
15秒前
田様应助我见春日明媚采纳,获得10
16秒前
CodeCraft应助zaphkiel采纳,获得10
16秒前
17秒前
18秒前
ljj001ljj发布了新的文献求助10
18秒前
科研通AI5应助顺利晓露采纳,获得10
19秒前
19秒前
默默板凳发布了新的文献求助10
19秒前
Lialia发布了新的文献求助10
20秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738035
求助须知:如何正确求助?哪些是违规求助? 3281550
关于积分的说明 10025988
捐赠科研通 2998302
什么是DOI,文献DOI怎么找? 1645228
邀请新用户注册赠送积分活动 782660
科研通“疑难数据库(出版商)”最低求助积分说明 749882