Uninterrupted path planning system for Multi-USV sampling mission in a cluttered ocean environment

运动规划 实时计算 计算机科学 随机树 采样(信号处理) 解算器 粒子群优化 工程类 模拟 人工智能 计算机视觉 机器人 算法 滤波器(信号处理) 程序设计语言
作者
Somaiyeh MahmoudZadeh,Amin Abbasi,Amirmehdi Yazdani,Hai Wang,Yuanchang Liu
出处
期刊:Ocean Engineering [Elsevier BV]
卷期号:254: 111328-111328 被引量:45
标识
DOI:10.1016/j.oceaneng.2022.111328
摘要

This paper presents an uninterrupted collision-free path planning system that facilitates the operational performance of multiple unmanned surface vehicles (USVs) in an ocean sampling mission. The proposed uninterrupted path planning system is developed based on the integration of a novel B-Spline data frame and particle swarm optimization (PSO)-based solver engine. The new B-spline data framing structure provides smart sampling of the candidate spots without needing full stop for completing the sampling tasks. This enables the USVs to encircle the area smoothly while simultaneously correcting the heading angle toward the next spot and preventing sharp changes in the vehicle's heading. Then, the optimization engine generates optimal, smooth, and constraint-aware path curves for multiple USVs to conduct the sampling mission from start point to the rendezvous point. The path generated incorporates controllability over the vehicles' velocity profile to prevent experiencing zero velocity and frequent stop/start switching of the controller. To achieve faster convergence of the optimization routine, a suitable search space decomposition scheme is proposed. Extensive simulation studies emulating a realistic ocean sampling mission are conducted to examine the feasibility and effectiveness of the proposed path planning system. This encapsulates modelling a realistic maritime environment of Indonesian Archipelago in Banda Sea including ocean waves, obstacles, and no-fly zones and introducing several performance indices to benchmark the path planning system performance. This process is accompanied by a comparative study of the proposed path planning system with a well-known state-of-the art piecewise, rapidly exploring random tree (RRT), and differential evolution-based path planning algorithms. The results of the simulation confirm the suitability and robustness of the proposed path planning system for the uninterrupted ocean sampling missions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朱美润完成签到 ,获得积分10
1秒前
小土豆完成签到 ,获得积分10
1秒前
2秒前
自信鞯完成签到,获得积分10
2秒前
2秒前
harry完成签到,获得积分10
2秒前
见景风发布了新的文献求助10
2秒前
2秒前
2秒前
研友_VZG7GZ应助栎阳采纳,获得10
2秒前
LB应助lin采纳,获得10
3秒前
光亮笑柳完成签到,获得积分10
3秒前
BX1823关注了科研通微信公众号
3秒前
3秒前
丘比特应助无私幻枫采纳,获得10
4秒前
wishes完成签到 ,获得积分10
4秒前
顾矜应助ll2925203采纳,获得10
4秒前
爆米花应助科研老采纳,获得30
4秒前
4秒前
5秒前
5秒前
5秒前
revo完成签到,获得积分10
5秒前
Neymar完成签到,获得积分10
5秒前
gzy完成签到,获得积分20
5秒前
阿藏完成签到,获得积分10
6秒前
YDM关闭了YDM文献求助
6秒前
谢颖发布了新的文献求助10
6秒前
zouzou发布了新的文献求助10
6秒前
无可匹敌的饭量完成签到,获得积分10
7秒前
7秒前
7秒前
666ll完成签到,获得积分10
7秒前
7秒前
是你完成签到,获得积分20
7秒前
见景风完成签到,获得积分10
8秒前
juzi完成签到,获得积分10
8秒前
作案不留痕完成签到,获得积分10
8秒前
8秒前
林子昂发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5258050
求助须知:如何正确求助?哪些是违规求助? 4419997
关于积分的说明 13758921
捐赠科研通 4293480
什么是DOI,文献DOI怎么找? 2356024
邀请新用户注册赠送积分活动 1352424
关于科研通互助平台的介绍 1313196