A traffic flow-forecasting model based on multi-head spatio–temporal attention and adaptive graph convolutional networks

计算机科学 图形 空间相关性 相关性 数据挖掘 实现(概率) 卷积(计算机科学) 理论计算机科学 人工智能 数学 统计 几何学 人工神经网络 电信
作者
Hong Zhang,Sunan Kan,Jie Cao,Linlong Chen,Tianxin Zhao
出处
期刊:International Journal of Modern Physics C [World Scientific]
卷期号:33 (10) 被引量:2
标识
DOI:10.1142/s0129183122501376
摘要

Accurate traffic flow forecasting is a prerequisite guarantee for the realization of intelligent transportation, but it is a challenging task due to the complex spatial-temporal dependence and uncertainty of traffic flow. In most existing approaches, spatial correlation is captured using graph convolution networks in a pre-determined graph structure. However, some nodes in such a graph structure have spatial correlations between them but are missing a connection, so the hidden spatial correlations between these nodes cannot be captured. Traffic flow has dynamic characteristics, showing different characteristics over time. Most methods ignore the dynamics of traffic flow when modeling the spatio–temporal correlation of traffic flow. We proposed a new network model (MSTA-GCN) to solve the above problem. The model presents a gated adaptive graph convolutional network that captures the hidden spatial correlations between graph nodes from the adaptive. In addition, the model introduces a multi-head spatial-temporal attention mechanism to pay attention to spatial-temporal information of different historical moments and different spatial dimensions to effectively capture the dynamics of spatial-temporal correlation of traffic flow. Extensive experiments were conducted on four datasets of PEMS. The experimental results show that the MSTA-GCN model has better forecasting performance compared with the baseline methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黄雨淋完成签到,获得积分10
刚刚
DuanYou完成签到,获得积分10
刚刚
1秒前
Criminology34应助ccc采纳,获得10
1秒前
大模型应助謓言采纳,获得10
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
无奈的晴发布了新的文献求助10
2秒前
3秒前
量子星尘发布了新的文献求助10
5秒前
当年明月发布了新的文献求助10
6秒前
8秒前
8秒前
F1t272发布了新的文献求助10
8秒前
鹿c3完成签到,获得积分10
9秒前
无奈的晴完成签到,获得积分10
9秒前
YY完成签到,获得积分10
10秒前
BowieHuang应助ddw采纳,获得10
11秒前
柒零七发布了新的文献求助10
11秒前
fx发布了新的文献求助10
12秒前
猪猪hero应助科研通管家采纳,获得10
12秒前
猪猪hero应助科研通管家采纳,获得10
12秒前
猪猪hero应助科研通管家采纳,获得10
12秒前
12秒前
顾矜应助科研通管家采纳,获得10
12秒前
猪猪hero应助科研通管家采纳,获得10
12秒前
猪猪hero应助科研通管家采纳,获得10
12秒前
猪猪hero应助科研通管家采纳,获得10
12秒前
12秒前
猪猪hero应助科研通管家采纳,获得10
12秒前
桐桐应助科研通管家采纳,获得10
12秒前
桐桐应助科研通管家采纳,获得10
12秒前
Mic应助科研通管家采纳,获得10
12秒前
12秒前
星辰大海应助科研通管家采纳,获得10
13秒前
Mic应助科研通管家采纳,获得10
13秒前
13秒前
满意曼荷应助科研通管家采纳,获得10
13秒前
星辰大海应助科研通管家采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
the Oxford Guide to the Bantu Languages 3000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5761761
求助须知:如何正确求助?哪些是违规求助? 5531887
关于积分的说明 15400675
捐赠科研通 4897994
什么是DOI,文献DOI怎么找? 2634640
邀请新用户注册赠送积分活动 1582800
关于科研通互助平台的介绍 1538049