A traffic flow-forecasting model based on multi-head spatio–temporal attention and adaptive graph convolutional networks

计算机科学 图形 空间相关性 相关性 数据挖掘 实现(概率) 卷积(计算机科学) 理论计算机科学 人工智能 数学 统计 几何学 人工神经网络 电信
作者
Hong Zhang,Sunan Kan,Jie Cao,Linlong Chen,Tianxin Zhao
出处
期刊:International Journal of Modern Physics C [World Scientific]
卷期号:33 (10) 被引量:2
标识
DOI:10.1142/s0129183122501376
摘要

Accurate traffic flow forecasting is a prerequisite guarantee for the realization of intelligent transportation, but it is a challenging task due to the complex spatial-temporal dependence and uncertainty of traffic flow. In most existing approaches, spatial correlation is captured using graph convolution networks in a pre-determined graph structure. However, some nodes in such a graph structure have spatial correlations between them but are missing a connection, so the hidden spatial correlations between these nodes cannot be captured. Traffic flow has dynamic characteristics, showing different characteristics over time. Most methods ignore the dynamics of traffic flow when modeling the spatio–temporal correlation of traffic flow. We proposed a new network model (MSTA-GCN) to solve the above problem. The model presents a gated adaptive graph convolutional network that captures the hidden spatial correlations between graph nodes from the adaptive. In addition, the model introduces a multi-head spatial-temporal attention mechanism to pay attention to spatial-temporal information of different historical moments and different spatial dimensions to effectively capture the dynamics of spatial-temporal correlation of traffic flow. Extensive experiments were conducted on four datasets of PEMS. The experimental results show that the MSTA-GCN model has better forecasting performance compared with the baseline methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助甜甜的难敌采纳,获得30
1秒前
满堂花醉三千客完成签到 ,获得积分10
1秒前
1秒前
1秒前
gao完成签到,获得积分10
2秒前
LiuRuizhe完成签到,获得积分10
2秒前
绘梨衣发布了新的文献求助10
2秒前
2秒前
3秒前
淡定紫菱发布了新的文献求助10
4秒前
李繁蕊发布了新的文献求助10
6秒前
万能图书馆应助愉快寄真采纳,获得10
6秒前
Rrr发布了新的文献求助10
6秒前
7秒前
7秒前
高兴藏花发布了新的文献求助10
7秒前
8秒前
顾闭月发布了新的文献求助10
10秒前
励志小薛完成签到,获得积分20
11秒前
doudou完成签到,获得积分10
11秒前
12秒前
Ting完成签到,获得积分10
13秒前
高兴藏花完成签到 ,获得积分20
13秒前
健忘的沛蓝完成签到 ,获得积分10
13秒前
clear发布了新的文献求助10
14秒前
14秒前
感动傀斗完成签到,获得积分10
14秒前
眼睛大的小鸽子完成签到 ,获得积分10
14秒前
hu完成签到,获得积分10
14秒前
科研通AI5应助顺顺采纳,获得10
14秒前
思源应助shengChen采纳,获得10
15秒前
宁静致远发布了新的文献求助10
16秒前
zhenpeng8888完成签到 ,获得积分10
16秒前
霜序初四完成签到 ,获得积分10
16秒前
17秒前
爆米花应助青木蓝采纳,获得10
17秒前
顾矜应助frank采纳,获得10
18秒前
heavennew完成签到,获得积分10
18秒前
充电宝应助绘梨衣采纳,获得10
19秒前
华仔应助励志小薛采纳,获得10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794