A traffic flow-forecasting model based on multi-head spatio–temporal attention and adaptive graph convolutional networks

计算机科学 图形 空间相关性 相关性 数据挖掘 实现(概率) 卷积(计算机科学) 理论计算机科学 人工智能 数学 统计 几何学 人工神经网络 电信
作者
Hong Zhang,Sunan Kan,Jie Cao,Linlong Chen,Tianxin Zhao
出处
期刊:International Journal of Modern Physics C [World Scientific]
卷期号:33 (10) 被引量:2
标识
DOI:10.1142/s0129183122501376
摘要

Accurate traffic flow forecasting is a prerequisite guarantee for the realization of intelligent transportation, but it is a challenging task due to the complex spatial-temporal dependence and uncertainty of traffic flow. In most existing approaches, spatial correlation is captured using graph convolution networks in a pre-determined graph structure. However, some nodes in such a graph structure have spatial correlations between them but are missing a connection, so the hidden spatial correlations between these nodes cannot be captured. Traffic flow has dynamic characteristics, showing different characteristics over time. Most methods ignore the dynamics of traffic flow when modeling the spatio–temporal correlation of traffic flow. We proposed a new network model (MSTA-GCN) to solve the above problem. The model presents a gated adaptive graph convolutional network that captures the hidden spatial correlations between graph nodes from the adaptive. In addition, the model introduces a multi-head spatial-temporal attention mechanism to pay attention to spatial-temporal information of different historical moments and different spatial dimensions to effectively capture the dynamics of spatial-temporal correlation of traffic flow. Extensive experiments were conducted on four datasets of PEMS. The experimental results show that the MSTA-GCN model has better forecasting performance compared with the baseline methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
万能图书馆应助徐小采纳,获得10
1秒前
2秒前
3秒前
4秒前
AA关注了科研通微信公众号
5秒前
咖啡先生发布了新的文献求助10
6秒前
ccc完成签到 ,获得积分10
6秒前
10秒前
10秒前
hero3发布了新的文献求助10
11秒前
16秒前
小羊发布了新的文献求助10
18秒前
18秒前
shilye发布了新的文献求助30
20秒前
曹小曹完成签到,获得积分10
20秒前
善学以致用应助砚行书采纳,获得10
21秒前
bkagyin应助咖啡先生采纳,获得10
23秒前
23秒前
iNk应助淇淇采纳,获得20
24秒前
iNk应助嘟嘟采纳,获得20
25秒前
27秒前
29秒前
30秒前
小羊完成签到,获得积分10
30秒前
皓月星辰发布了新的文献求助10
31秒前
33秒前
34秒前
34秒前
砚行书发布了新的文献求助10
35秒前
36秒前
传奇3应助幽默元正采纳,获得10
37秒前
柯一一应助学霸宇大王采纳,获得10
37秒前
帅气飞绿发布了新的文献求助10
38秒前
可爱的函函应助轻念采纳,获得10
39秒前
LST发布了新的文献求助10
39秒前
39秒前
ln发布了新的文献求助10
40秒前
老实紫萱发布了新的文献求助10
41秒前
GGbound发布了新的文献求助10
43秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962701
求助须知:如何正确求助?哪些是违规求助? 3508707
关于积分的说明 11142251
捐赠科研通 3241458
什么是DOI,文献DOI怎么找? 1791539
邀请新用户注册赠送积分活动 872968
科研通“疑难数据库(出版商)”最低求助积分说明 803517