小桶
翼状胬肉
单核苷酸多态性
生物
基因
遗传学
基因表达
基因本体论
基因型
生物化学
作者
Xiying Wu,Shiqi Dong,Yuting Xu,Ge Zhu,Ming Yan
标识
DOI:10.1080/13816810.2022.2065511
摘要
Purpose To explore the underlying molecular mechanism of pterygium and identify the key genes regulating the development of pterygium.Methods Differentially expressed mRNAs were obtained from the Gene Expression Omnibus (GEO) database. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed using the DAVID (http://david.abcc.ncifcrf.gov/). The differential expressions of hub genes were verified using the reverse transcription-real-time fluorescent quantitative PCR (RT-qPCR). The function of the hub genes was further confirmed based on associations between the single nucleotide polymorphisms (SNPs) in hub genes and pterygium. The genotyping results were analyzed using SNPStats online software in five gene models, including codominant, dominant, recessive, overdominant, and log-additive. Five gene models were analyzed using SNPStats.Results We found that 240 genes were significantly differentially expressed. Functional enrichment analysis showed that focal adhesion pathway is extremely meaningful, among which JUN, FN1, and LAMB1 were verified to significantly differentially express in pterygium (P = 0.0011, P = 0.0018, and P = 0.0050, respectively). However, the all nine candidate SNPs (rs11688, rs3748814 in JUN; rs1263, rs1132741, rs1250259 in FN1; rs20556, rs35710474, rs25659, rs4320486 in LAMB1), were not statistically associated with pterygium.Conclusion Our results demonstrated that JUN, FN1, and LAMB1 polymorphisms were not associated with susceptibility to pterygium in Chinese Han population. Considering the fact that these three genes are differentially expressed in pterygium, further research is needed to explain its involvement in pterygium.
科研通智能强力驱动
Strongly Powered by AbleSci AI