Machine learning algorithms as early diagnostic tools for pancreatic fistula following pancreaticoduodenectomy and guide drain removal: A retrospective cohort study

医学 胰瘘 胰十二指肠切除术 接收机工作特性 算法 回顾性队列研究 置信区间 瘘管 机器学习 队列 曲线下面积 外科 人工智能 内科学 胰腺 计算机科学 切除术
作者
Ziyun Shen,Haoda Chen,Weishen Wang,Wei Xu,Yiran Zhou,Yuanchi Weng,Zhiwei Xu,Xiaxing Deng,Chenghong Peng,Xiongxiong Lu,Baiyong Shen
出处
期刊:International Journal of Surgery [Elsevier]
卷期号:102: 106638-106638 被引量:19
标识
DOI:10.1016/j.ijsu.2022.106638
摘要

Clinically relevant postoperative pancreatic fistula (CR-POPF) remains the major cause of morbidity following pancreaticoduodenectomy (PD). Several model score systems such as the Fistula Risk Score (FRS) have been developed to predict CR-POPF using preoperative and intraoperative data. Machine learning (ML) algorithms are increasingly applied in the medical field and they could be used to assess the risk of CR-POPF, identify clinically meaningful data and guide drain removal. Data from consecutive patients who underwent PD between January 1, 2010 and March 31, 2021 at a single high-volume center was collected retrospectively in this study. Demographics, clinical features, intraoperative parameters, and laboratory values were used to conduct the ML model. Four different ML algorithms (CatBoost, lightGBM, XGBoost and Random Forest) were used to train this model with cross-validation. A total of 2421 patients with 62 clinical parameters were enrolled in this ML model. The majority of patients (76.3%) underwent open PD while others underwent robot-assisted PD. CR-POPF occurred in 424 (17.5%) patients. The CatBoost algorithm outperformed other algorithms with a mean area under the receiver operating characteristic curve (AUC) of 0.81 (95% confidence interval: 0.80–0.82) from the 5-fold cross-validation procedure. In the test dataset, the CatBoost algorithm also achieved the best mean-AUC of 0.83. The most important value was mean drain fluid amylase (DFA) in the first seven postoperative days (POD). The performance of models that used only preoperative data and intraoperative data was marginally lower than that of models that used combined data. Our ML algorithms could be applied as early diagnostic tools for CR-POPF in patients who underwent PD. Such real-time clinical decision support tools can identify patients with a high risk of CR-POPF, help in developing the perioperative management plan and guide the optimal timing of drain removal.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虚心绿草完成签到,获得积分10
刚刚
DANK1NG发布了新的文献求助10
1秒前
buqi完成签到,获得积分10
1秒前
1秒前
Orange应助哈哈哈采纳,获得30
1秒前
2秒前
2秒前
猪猪hero发布了新的文献求助30
2秒前
天天都肚子疼完成签到,获得积分10
2秒前
2秒前
困困发布了新的文献求助10
2秒前
slx发布了新的文献求助10
3秒前
纯懿发布了新的文献求助30
3秒前
3秒前
中岛悠斗发布了新的文献求助10
3秒前
王月关注了科研通微信公众号
4秒前
4秒前
清明完成签到,获得积分10
4秒前
ff发布了新的文献求助10
4秒前
5秒前
lxl完成签到,获得积分10
5秒前
杨lei发布了新的文献求助10
5秒前
5秒前
星辰大海应助紫心采纳,获得10
6秒前
buqi发布了新的文献求助10
6秒前
笑点低南晴完成签到,获得积分10
6秒前
贾翔完成签到,获得积分10
6秒前
6秒前
7秒前
Mikumo完成签到,获得积分10
7秒前
7秒前
8秒前
童童完成签到,获得积分10
8秒前
feizhuliu发布了新的文献求助10
8秒前
Hiiiiii完成签到,获得积分10
8秒前
hbu123发布了新的文献求助10
8秒前
脑洞疼应助王乾宇采纳,获得10
9秒前
Arthur完成签到 ,获得积分10
9秒前
虚心绿草发布了新的文献求助10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Rare earth elements and their applications 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5768619
求助须知:如何正确求助?哪些是违规求助? 5576280
关于积分的说明 15419148
捐赠科研通 4902454
什么是DOI,文献DOI怎么找? 2637767
邀请新用户注册赠送积分活动 1585694
关于科研通互助平台的介绍 1540805