Machine learning algorithms as early diagnostic tools for pancreatic fistula following pancreaticoduodenectomy and guide drain removal: A retrospective cohort study

医学 胰瘘 胰十二指肠切除术 接收机工作特性 算法 回顾性队列研究 置信区间 瘘管 机器学习 队列 曲线下面积 外科 内科学 胰腺 计算机科学 切除术
作者
Ziyun Shen,Haoda Chen,Weishen Wang,Wei Xu,Yiran Zhou,Yiwu Weng,Zhiwei Xu,Xiaxing Deng,Chenghong Peng,Xiang Lü,Baiyong Shen
出处
期刊:International Journal of Surgery [Elsevier]
卷期号:102: 106638-106638 被引量:6
标识
DOI:10.1016/j.ijsu.2022.106638
摘要

Clinically relevant postoperative pancreatic fistula (CR-POPF) remains the major cause of morbidity following pancreaticoduodenectomy (PD). Several model score systems such as the Fistula Risk Score (FRS) have been developed to predict CR-POPF using preoperative and intraoperative data. Machine learning (ML) algorithms are increasingly applied in the medical field and they could be used to assess the risk of CR-POPF, identify clinically meaningful data and guide drain removal. Data from consecutive patients who underwent PD between January 1, 2010 and March 31, 2021 at a single high-volume center was collected retrospectively in this study. Demographics, clinical features, intraoperative parameters, and laboratory values were used to conduct the ML model. Four different ML algorithms (CatBoost, lightGBM, XGBoost and Random Forest) were used to train this model with cross-validation. A total of 2421 patients with 62 clinical parameters were enrolled in this ML model. The majority of patients (76.3%) underwent open PD while others underwent robot-assisted PD. CR-POPF occurred in 424 (17.5%) patients. The CatBoost algorithm outperformed other algorithms with a mean area under the receiver operating characteristic curve (AUC) of 0.81 (95% confidence interval: 0.80–0.82) from the 5-fold cross-validation procedure. In the test dataset, the CatBoost algorithm also achieved the best mean-AUC of 0.83. The most important value was mean drain fluid amylase (DFA) in the first seven postoperative days (POD). The performance of models that used only preoperative data and intraoperative data was marginally lower than that of models that used combined data. Our ML algorithms could be applied as early diagnostic tools for CR-POPF in patients who underwent PD. Such real-time clinical decision support tools can identify patients with a high risk of CR-POPF, help in developing the perioperative management plan and guide the optimal timing of drain removal.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小至完成签到,获得积分10
刚刚
长孙曼香完成签到,获得积分10
2秒前
DAGH完成签到,获得积分20
2秒前
天天完成签到,获得积分10
2秒前
生动雁发布了新的文献求助10
4秒前
6秒前
SciGPT应助机灵的鸣凤采纳,获得10
6秒前
8秒前
8秒前
8秒前
独特夜绿发布了新的文献求助10
10秒前
阿哇完成签到,获得积分10
10秒前
星辰大海应助1234采纳,获得10
10秒前
李爱国应助呼呼呼三十三采纳,获得30
11秒前
wwww0wwww应助漂亮的忆文采纳,获得10
11秒前
我真棒完成签到,获得积分10
12秒前
Jun完成签到 ,获得积分10
12秒前
辰月皓发布了新的文献求助10
13秒前
13秒前
Minh23完成签到,获得积分10
14秒前
twk发布了新的文献求助10
14秒前
freedom发布了新的文献求助10
14秒前
脑洞疼应助twk采纳,获得10
19秒前
erhgbw发布了新的文献求助40
24秒前
24秒前
24秒前
Dr_Stars完成签到,获得积分10
24秒前
24秒前
情怀应助甜甜灵槐采纳,获得10
25秒前
26秒前
麻辣烫完成签到,获得积分10
26秒前
27秒前
Someone应助科学家采纳,获得10
27秒前
TH发布了新的文献求助10
27秒前
晨曦发布了新的文献求助10
28秒前
28秒前
zl12345发布了新的文献求助30
28秒前
辰月皓完成签到,获得积分10
29秒前
30秒前
DAKE发布了新的文献求助10
31秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145219
求助须知:如何正确求助?哪些是违规求助? 2796603
关于积分的说明 7820639
捐赠科研通 2452983
什么是DOI,文献DOI怎么找? 1305309
科研通“疑难数据库(出版商)”最低求助积分说明 627466
版权声明 601464