清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Data-Driven Strategies for Hierarchical Predictive Control in Unknown Environments

模型预测控制 任务(项目管理) 计算机科学 参数化复杂度 状态空间 人工智能 控制器(灌溉) 国家(计算机科学) 弹道 控制(管理) 机器学习 算法 工程类 数学 物理 天文 统计 生物 系统工程 农学
作者
Charlott Vallon,Francesco Borrelli
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:19 (3): 1434-1445 被引量:6
标识
DOI:10.1109/tase.2021.3137769
摘要

This article proposes a hierarchical learning architecture for safe data-driven control in unknown environments. We consider a constrained nonlinear dynamical system and assume the availability of state-input trajectories solving control tasks in different environments. In addition to task-invariant system state and input constraints, a parameterized environment model generates task-specific state constraints, which are satisfied by the stored trajectories. Our goal is to use these trajectories to find a safe and high-performing policy for a new task in a new, unknown environment. We propose using the stored data to learn generalizable control strategies. At each time step, based on a local forecast of the new task environment, the learned strategy consists of a target region in the state space and input constraints to guide the system evolution to the target region. These target regions are used as terminal sets by a low-level model predictive controller. We show how to i) design the target sets from past data and then ii) incorporate them into a model predictive control scheme with shifting horizon that ensures safety of the closed-loop system when performing the new task. We prove the feasibility of the resulting control policy, and apply the proposed method to robotic path planning, racing, and computer game applications. Note to Practitioners —This paper was motivated by the challenge of designing safe controllers for autonomous systems navigating through new environments. We consider scenarios where trajectory data from control tasks in different environments is available to the control designer. Possible applications include autonomous vehicles racing on new tracks or robotic manipulators performing tasks in the presence of new obstacles. Existing approaches to model-based control design for new environments generally use trajectory libraries, systematically adapting stored trajectories to the constraints of the new environment. This typically requires a priori knowledge of the entire task environment as well as resources to store and maintain the growing library. This paper suggests a new hierarchical control approach, in which stored trajectories are used to learn high-level strategies that can be applied while solving the new task. The strategies are learned offline, and only the parameterized strategy function needs to be stored for online control. Strategies only require knowledge of the nearby task environment, and provide navigation guidelines for the system. In this paper we show how to find such strategies from previous task data and how to integrate them into a low-level controller to safely and efficiently solve the new task. We also show how to adapt the modular framework as needed for a user’s desired application. Simulation experiments in robotic manipulator, autonomous vehicle, and computer game examples suggest that our approach can be used in a wide range of applications. In future research, we will address how to adapt the method for time-varying or stochastic environments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
14秒前
merrylake完成签到 ,获得积分10
16秒前
菩提本无树完成签到,获得积分10
32秒前
43秒前
45秒前
宇文非笑完成签到 ,获得积分10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
wanci应助科研通管家采纳,获得10
1分钟前
Axs完成签到,获得积分10
2分钟前
2分钟前
tuanheqi应助jyy采纳,获得200
2分钟前
蓝桉完成签到 ,获得积分10
2分钟前
方白秋完成签到,获得积分10
2分钟前
3分钟前
爱静静应助科研通管家采纳,获得30
3分钟前
共享精神应助科研通管家采纳,获得10
3分钟前
小二郎应助科研通管家采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
3分钟前
4分钟前
肆肆完成签到,获得积分10
4分钟前
jyy发布了新的文献求助10
4分钟前
4分钟前
清雨发布了新的文献求助10
4分钟前
5分钟前
chen完成签到 ,获得积分10
5分钟前
嬗变的天秤完成签到,获得积分10
5分钟前
爱静静完成签到,获得积分0
5分钟前
爱静静应助科研通管家采纳,获得10
5分钟前
爱静静应助科研通管家采纳,获得10
5分钟前
爱静静应助科研通管家采纳,获得10
5分钟前
爱静静应助科研通管家采纳,获得10
5分钟前
爱静静应助科研通管家采纳,获得10
5分钟前
爱静静应助科研通管家采纳,获得10
5分钟前
爱静静应助科研通管家采纳,获得10
5分钟前
爱静静应助科研通管家采纳,获得10
5分钟前
爱静静应助科研通管家采纳,获得10
5分钟前
h0jian09完成签到,获得积分10
5分钟前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Актуализированная стратиграфическая схема триасовых отложений Прикаспийского региона. Объяснительная записка 360
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167202
求助须知:如何正确求助?哪些是违规求助? 2818687
关于积分的说明 7921888
捐赠科研通 2478444
什么是DOI,文献DOI怎么找? 1320323
科研通“疑难数据库(出版商)”最低求助积分说明 632748
版权声明 602438