Data-Driven Strategies for Hierarchical Predictive Control in Unknown Environments

模型预测控制 任务(项目管理) 计算机科学 参数化复杂度 状态空间 人工智能 控制器(灌溉) 国家(计算机科学) 弹道 控制(管理) 机器学习 算法 工程类 数学 物理 天文 统计 生物 系统工程 农学
作者
Charlott Vallon,Francesco Borrelli
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:19 (3): 1434-1445 被引量:6
标识
DOI:10.1109/tase.2021.3137769
摘要

This article proposes a hierarchical learning architecture for safe data-driven control in unknown environments. We consider a constrained nonlinear dynamical system and assume the availability of state-input trajectories solving control tasks in different environments. In addition to task-invariant system state and input constraints, a parameterized environment model generates task-specific state constraints, which are satisfied by the stored trajectories. Our goal is to use these trajectories to find a safe and high-performing policy for a new task in a new, unknown environment. We propose using the stored data to learn generalizable control strategies. At each time step, based on a local forecast of the new task environment, the learned strategy consists of a target region in the state space and input constraints to guide the system evolution to the target region. These target regions are used as terminal sets by a low-level model predictive controller. We show how to i) design the target sets from past data and then ii) incorporate them into a model predictive control scheme with shifting horizon that ensures safety of the closed-loop system when performing the new task. We prove the feasibility of the resulting control policy, and apply the proposed method to robotic path planning, racing, and computer game applications. Note to Practitioners —This paper was motivated by the challenge of designing safe controllers for autonomous systems navigating through new environments. We consider scenarios where trajectory data from control tasks in different environments is available to the control designer. Possible applications include autonomous vehicles racing on new tracks or robotic manipulators performing tasks in the presence of new obstacles. Existing approaches to model-based control design for new environments generally use trajectory libraries, systematically adapting stored trajectories to the constraints of the new environment. This typically requires a priori knowledge of the entire task environment as well as resources to store and maintain the growing library. This paper suggests a new hierarchical control approach, in which stored trajectories are used to learn high-level strategies that can be applied while solving the new task. The strategies are learned offline, and only the parameterized strategy function needs to be stored for online control. Strategies only require knowledge of the nearby task environment, and provide navigation guidelines for the system. In this paper we show how to find such strategies from previous task data and how to integrate them into a low-level controller to safely and efficiently solve the new task. We also show how to adapt the modular framework as needed for a user’s desired application. Simulation experiments in robotic manipulator, autonomous vehicle, and computer game examples suggest that our approach can be used in a wide range of applications. In future research, we will address how to adapt the method for time-varying or stochastic environments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
wy.he应助小小雨泪采纳,获得10
1秒前
深情安青应助三里墩头采纳,获得10
1秒前
keyanrubbish完成签到,获得积分10
1秒前
无奈的博超完成签到,获得积分10
1秒前
居学尉完成签到,获得积分0
1秒前
pp996关注了科研通微信公众号
2秒前
小琪猪发布了新的文献求助10
2秒前
Donk完成签到 ,获得积分10
2秒前
微笑晓丝完成签到,获得积分10
2秒前
冰箱上的贞子完成签到,获得积分10
2秒前
xzn1123完成签到,获得积分0
2秒前
黄婷完成签到,获得积分10
3秒前
hmbb完成签到,获得积分20
3秒前
3秒前
3秒前
科研通AI2S应助Nana采纳,获得10
3秒前
tigger完成签到,获得积分10
3秒前
感冒了完成签到,获得积分10
4秒前
helly完成签到,获得积分10
4秒前
吴圳完成签到,获得积分20
5秒前
直率的皮带完成签到,获得积分10
5秒前
倪满分完成签到,获得积分10
5秒前
京城世界完成签到,获得积分10
5秒前
科研通AI2S应助个性凝天采纳,获得10
5秒前
ll完成签到,获得积分10
5秒前
寒冷靖易完成签到,获得积分10
5秒前
李白完成签到,获得积分10
6秒前
ll应助鲜艳的靖雁采纳,获得10
6秒前
6秒前
哎呀哎呀呀完成签到,获得积分10
6秒前
6秒前
luyao970131发布了新的文献求助10
6秒前
myjf发布了新的文献求助10
7秒前
7秒前
zhang应助清秀的怀蕊采纳,获得10
7秒前
情怀应助胡子西瓜采纳,获得10
8秒前
人间忽晚完成签到,获得积分10
8秒前
研友_VZG7GZ应助李露露采纳,获得10
8秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968844
求助须知:如何正确求助?哪些是违规求助? 3513769
关于积分的说明 11169920
捐赠科研通 3249095
什么是DOI,文献DOI怎么找? 1794630
邀请新用户注册赠送积分活动 875278
科研通“疑难数据库(出版商)”最低求助积分说明 804755