PMP-Net++: Point Cloud Completion by Transformer-Enhanced Multi-Step Point Moving Paths

点云 计算机科学 人工智能 点过程 变压器 点(几何) 网(多面体) 算法 数学 几何学 工程类 统计 电气工程 电压
作者
Xin Wen,Peng Xiang,Zhizhong Han,Yan‐Pei Cao,Pengfei Wan,Wen Zheng,Yu-Shen Liu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (1): 852-867 被引量:95
标识
DOI:10.1109/tpami.2022.3159003
摘要

Point cloud completion concerns to predict missing part for incomplete 3D shapes. A common strategy is to generate complete shape according to incomplete input. However, unordered nature of point clouds will degrade generation of high-quality 3D shapes, as detailed topology and structure of unordered points are hard to be captured during the generative process using an extracted latent code. We address this problem by formulating completion as point cloud deformation process. Specifically, we design a novel neural network, named PMP-Net++, to mimic behavior of an earth mover. It moves each point of incomplete input to obtain a complete point cloud, where total distance of point moving paths (PMPs) should be the shortest. Therefore, PMP-Net++ predicts unique PMP for each point according to constraint of point moving distances. The network learns a strict and unique correspondence on point-level, and thus improves quality of predicted complete shape. Moreover, since moving points heavily relies on per-point features learned by network, we further introduce a transformer-enhanced representation learning network, which significantly improves completion performance of PMP-Net++. We conduct comprehensive experiments in shape completion, and further explore application on point cloud up-sampling, which demonstrate non-trivial improvement of PMP-Net++ over state-of-the-art point cloud completion/up-sampling methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
幽灵发布了新的文献求助10
1秒前
专注的问寒应助黄老牛采纳,获得150
2秒前
bukeshuo发布了新的文献求助10
3秒前
agrlook完成签到,获得积分10
3秒前
小二郎应助chen采纳,获得10
3秒前
5秒前
专注的问寒应助Seona采纳,获得20
5秒前
大个应助xujingyi采纳,获得10
6秒前
biubiubiu发布了新的文献求助10
6秒前
劉劉完成签到 ,获得积分10
7秒前
xz发布了新的文献求助20
9秒前
univ完成签到,获得积分10
10秒前
笑傲江湖完成签到,获得积分10
10秒前
12秒前
kid完成签到,获得积分10
12秒前
Jasper应助123456采纳,获得30
12秒前
lc发布了新的文献求助10
12秒前
12秒前
小白完成签到 ,获得积分10
12秒前
研友_VZG7GZ应助独特的高山采纳,获得10
13秒前
13秒前
14秒前
14秒前
温暖发布了新的文献求助10
16秒前
kid发布了新的文献求助10
16秒前
Dskelf完成签到,获得积分10
17秒前
17秒前
量子星尘发布了新的文献求助10
18秒前
111给111的求助进行了留言
19秒前
123456完成签到 ,获得积分10
19秒前
香蕉从寒完成签到,获得积分10
22秒前
23秒前
小二郎应助坦率老头采纳,获得10
23秒前
23秒前
利于蓄力完成签到,获得积分10
23秒前
24秒前
24秒前
25秒前
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646490
求助须知:如何正确求助?哪些是违规求助? 4771445
关于积分的说明 15035283
捐赠科研通 4805288
什么是DOI,文献DOI怎么找? 2569581
邀请新用户注册赠送积分活动 1526573
关于科研通互助平台的介绍 1485858