A comprehensive and fair comparison of two neural operators (with practical extensions) based on FAIR data

人工神经网络 翼型 计算机科学 操作员(生物学) 算法 领域(数学) 功能(生物学) 人工智能 数学 航空航天工程 工程类 纯数学 化学 抑制因子 基因 生物 转录因子 进化生物学 生物化学
作者
Lu Lu,Xuhui Meng,Shengze Cai,Zhiping Mao,Somdatta Goswami,Zhongqiang Zhang,George Em Karniadakis
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:393: 114778-114778 被引量:255
标识
DOI:10.1016/j.cma.2022.114778
摘要

Neural operators can learn nonlinear mappings between function spaces and offer a new simulation paradigm for real-time prediction of complex dynamics for realistic diverse applications as well as for system identification in science and engineering. Herein, we investigate the performance of two neural operators, which have shown promising results so far, and we develop new practical extensions that will make them more accurate and robust and importantly more suitable for industrial-complexity applications. The first neural operator, DeepONet, was published in 2019 (Lu et al., 2019), and its original architecture was based on the universal approximation theorem of Chen & Chen (1995). The second one, named Fourier Neural Operator or FNO, was published in 2020 (Li et al., 2020), and it is based on parameterizing the integral kernel in the Fourier space. DeepONet is represented by a summation of products of neural networks (NNs), corresponding to the branch NN for the input function and the trunk NN for the output function; both NNs are general architectures, e.g., the branch NN can be replaced with a CNN or a ResNet. According to Kovachki et al. (2021), FNO in its continuous form can be viewed conceptually as a DeepONet with a specific architecture of the branch NN and a trunk NN represented by a trigonometric basis. In order to compare FNO with DeepONet computationally for realistic setups, we develop several extensions of FNO that can deal with complex geometric domains as well as mappings where the input and output function spaces are of different dimensions. We also develop an extended DeepONet with special features that provide inductive bias and accelerate training, and we present a faster implementation of DeepONet with cost comparable to the computational cost of FNO, which is based on the Fast Fourier Transform. We consider 16 different benchmarks to demonstrate the relative performance of the two neural operators, including instability wave analysis in hypersonic boundary layers, prediction of the vorticity field of a flapping airfoil, porous media simulations in complex-geometry domains, etc. We follow the guiding principles of FAIR (Findability, Accessibility, Interoperability, and Reusability) for scientific data management and stewardship. The performance of DeepONet and FNO is comparable for relatively simple settings, but for complex geometries the performance of FNO deteriorates greatly. We also compare theoretically the two neural operators and obtain similar error estimates for DeepONet and FNO under the same regularity assumptions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不信慕斯完成签到,获得积分10
刚刚
Jokeypu完成签到,获得积分10
刚刚
gnr2000发布了新的文献求助30
1秒前
1秒前
song99完成签到,获得积分10
1秒前
清醒的ZY发布了新的文献求助50
1秒前
二小发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
澹台灭明发布了新的文献求助10
2秒前
2秒前
bkagyin应助AteeqBaloch采纳,获得10
3秒前
二二二发布了新的文献求助10
3秒前
万能图书馆应助LIU采纳,获得10
3秒前
绿麦盲区发布了新的文献求助10
3秒前
FIGGIEKIO完成签到,获得积分10
3秒前
星星发布了新的文献求助10
3秒前
852应助luoshi采纳,获得10
4秒前
小王发布了新的文献求助10
4秒前
hahah完成签到,获得积分10
4秒前
4秒前
yang完成签到 ,获得积分10
5秒前
lynn_zhang完成签到,获得积分10
5秒前
化学狗发布了新的文献求助10
6秒前
6秒前
浩浩完成签到,获得积分10
7秒前
胡图图完成签到,获得积分10
7秒前
包容的剑发布了新的文献求助10
8秒前
9秒前
小马甲应助细腻沅采纳,获得10
9秒前
10秒前
招财不肥完成签到,获得积分10
10秒前
10秒前
77完成签到,获得积分10
11秒前
NexusExplorer应助顾阿秀采纳,获得10
11秒前
11秒前
科研通AI5应助二二二采纳,获得10
12秒前
terrell完成签到,获得积分10
12秒前
David完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762