A comprehensive and fair comparison of two neural operators (with practical extensions) based on FAIR data

人工神经网络 翼型 计算机科学 操作员(生物学) 算法 领域(数学) 功能(生物学) 人工智能 数学 航空航天工程 工程类 纯数学 化学 抑制因子 基因 生物 转录因子 进化生物学 生物化学
作者
Lu Lu,Xuhui Meng,Shengze Cai,Zhiping Mao,Somdatta Goswami,Zhongqiang Zhang,George Em Karniadakis
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:393: 114778-114778 被引量:255
标识
DOI:10.1016/j.cma.2022.114778
摘要

Neural operators can learn nonlinear mappings between function spaces and offer a new simulation paradigm for real-time prediction of complex dynamics for realistic diverse applications as well as for system identification in science and engineering. Herein, we investigate the performance of two neural operators, which have shown promising results so far, and we develop new practical extensions that will make them more accurate and robust and importantly more suitable for industrial-complexity applications. The first neural operator, DeepONet, was published in 2019 (Lu et al., 2019), and its original architecture was based on the universal approximation theorem of Chen & Chen (1995). The second one, named Fourier Neural Operator or FNO, was published in 2020 (Li et al., 2020), and it is based on parameterizing the integral kernel in the Fourier space. DeepONet is represented by a summation of products of neural networks (NNs), corresponding to the branch NN for the input function and the trunk NN for the output function; both NNs are general architectures, e.g., the branch NN can be replaced with a CNN or a ResNet. According to Kovachki et al. (2021), FNO in its continuous form can be viewed conceptually as a DeepONet with a specific architecture of the branch NN and a trunk NN represented by a trigonometric basis. In order to compare FNO with DeepONet computationally for realistic setups, we develop several extensions of FNO that can deal with complex geometric domains as well as mappings where the input and output function spaces are of different dimensions. We also develop an extended DeepONet with special features that provide inductive bias and accelerate training, and we present a faster implementation of DeepONet with cost comparable to the computational cost of FNO, which is based on the Fast Fourier Transform. We consider 16 different benchmarks to demonstrate the relative performance of the two neural operators, including instability wave analysis in hypersonic boundary layers, prediction of the vorticity field of a flapping airfoil, porous media simulations in complex-geometry domains, etc. We follow the guiding principles of FAIR (Findability, Accessibility, Interoperability, and Reusability) for scientific data management and stewardship. The performance of DeepONet and FNO is comparable for relatively simple settings, but for complex geometries the performance of FNO deteriorates greatly. We also compare theoretically the two neural operators and obtain similar error estimates for DeepONet and FNO under the same regularity assumptions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tigger完成签到 ,获得积分10
刚刚
2秒前
4秒前
优雅的千雁完成签到,获得积分10
6秒前
2316690509完成签到 ,获得积分10
6秒前
没用的三轮完成签到,获得积分10
6秒前
fancy完成签到 ,获得积分10
6秒前
mayberichard完成签到,获得积分10
10秒前
LINDENG2004完成签到 ,获得积分10
16秒前
wz完成签到,获得积分10
17秒前
简奥斯汀完成签到 ,获得积分10
24秒前
五本笔记完成签到 ,获得积分10
24秒前
27秒前
花花发布了新的文献求助20
27秒前
asd113发布了新的文献求助10
31秒前
美满的小蘑菇完成签到 ,获得积分10
31秒前
自然白安完成签到 ,获得积分10
37秒前
量子星尘发布了新的文献求助10
40秒前
等待小鸽子完成签到 ,获得积分10
42秒前
龙虾发票完成签到,获得积分10
49秒前
小康学弟完成签到 ,获得积分10
49秒前
了0完成签到 ,获得积分10
49秒前
慕青应助科研通管家采纳,获得10
52秒前
彭于晏应助科研通管家采纳,获得30
52秒前
毛豆爸爸应助科研通管家采纳,获得20
52秒前
林利芳完成签到 ,获得积分0
53秒前
JaneChen完成签到 ,获得积分10
55秒前
健壮惋清完成签到 ,获得积分10
55秒前
56秒前
gabee完成签到 ,获得积分10
1分钟前
liang19640908完成签到 ,获得积分10
1分钟前
奋斗的雪曼完成签到 ,获得积分10
1分钟前
粗心的飞槐完成签到 ,获得积分10
1分钟前
LELE完成签到 ,获得积分10
1分钟前
了0完成签到 ,获得积分10
1分钟前
apocalypse完成签到 ,获得积分10
1分钟前
guhao完成签到 ,获得积分10
1分钟前
指导灰完成签到 ,获得积分10
1分钟前
善良的火完成签到 ,获得积分10
1分钟前
优雅夕阳完成签到 ,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038066
求助须知:如何正确求助?哪些是违规求助? 3575779
关于积分的说明 11373801
捐赠科研通 3305584
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022