A comprehensive and fair comparison of two neural operators (with practical extensions) based on FAIR data

人工神经网络 翼型 计算机科学 操作员(生物学) 算法 领域(数学) 功能(生物学) 人工智能 数学 航空航天工程 工程类 纯数学 化学 抑制因子 基因 生物 转录因子 进化生物学 生物化学
作者
Lu Lu,Xuhui Meng,Shengze Cai,Zhiping Mao,Somdatta Goswami,Zhongqiang Zhang,George Em Karniadakis
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:393: 114778-114778 被引量:206
标识
DOI:10.1016/j.cma.2022.114778
摘要

Neural operators can learn nonlinear mappings between function spaces and offer a new simulation paradigm for real-time prediction of complex dynamics for realistic diverse applications as well as for system identification in science and engineering. Herein, we investigate the performance of two neural operators, which have shown promising results so far, and we develop new practical extensions that will make them more accurate and robust and importantly more suitable for industrial-complexity applications. The first neural operator, DeepONet, was published in 2019 (Lu et al., 2019), and its original architecture was based on the universal approximation theorem of Chen & Chen (1995). The second one, named Fourier Neural Operator or FNO, was published in 2020 (Li et al., 2020), and it is based on parameterizing the integral kernel in the Fourier space. DeepONet is represented by a summation of products of neural networks (NNs), corresponding to the branch NN for the input function and the trunk NN for the output function; both NNs are general architectures, e.g., the branch NN can be replaced with a CNN or a ResNet. According to Kovachki et al. (2021), FNO in its continuous form can be viewed conceptually as a DeepONet with a specific architecture of the branch NN and a trunk NN represented by a trigonometric basis. In order to compare FNO with DeepONet computationally for realistic setups, we develop several extensions of FNO that can deal with complex geometric domains as well as mappings where the input and output function spaces are of different dimensions. We also develop an extended DeepONet with special features that provide inductive bias and accelerate training, and we present a faster implementation of DeepONet with cost comparable to the computational cost of FNO, which is based on the Fast Fourier Transform. We consider 16 different benchmarks to demonstrate the relative performance of the two neural operators, including instability wave analysis in hypersonic boundary layers, prediction of the vorticity field of a flapping airfoil, porous media simulations in complex-geometry domains, etc. We follow the guiding principles of FAIR (Findability, Accessibility, Interoperability, and Reusability) for scientific data management and stewardship. The performance of DeepONet and FNO is comparable for relatively simple settings, but for complex geometries the performance of FNO deteriorates greatly. We also compare theoretically the two neural operators and obtain similar error estimates for DeepONet and FNO under the same regularity assumptions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沙子完成签到,获得积分10
刚刚
科研通AI2S应助wsgdhz采纳,获得10
1秒前
完美世界应助高山流水采纳,获得10
1秒前
天天快乐应助包容可仁采纳,获得100
1秒前
Lynnooii完成签到,获得积分10
1秒前
科研通AI2S应助shame采纳,获得10
1秒前
1秒前
坦率芝麻应助哎呦喂采纳,获得10
2秒前
mayxmzhang发布了新的文献求助30
2秒前
斯文败类应助落后猫咪采纳,获得30
3秒前
3秒前
云墨完成签到 ,获得积分10
3秒前
3秒前
超帅蓝血关注了科研通微信公众号
4秒前
Tttthhh完成签到,获得积分10
5秒前
5秒前
香蕉秋寒发布了新的文献求助10
5秒前
扎菜完成签到,获得积分20
5秒前
杨欢发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
江洋大盗完成签到,获得积分10
6秒前
qin希望应助呆萌的雁荷采纳,获得10
6秒前
DLY发布了新的文献求助10
8秒前
8秒前
LBJ完成签到,获得积分10
8秒前
吴海彤发布了新的文献求助10
9秒前
舒心的柚子完成签到,获得积分20
10秒前
香蕉觅云应助ycccccc采纳,获得10
11秒前
叶三秋发布了新的文献求助10
11秒前
天天快乐应助yueerww采纳,获得10
12秒前
12秒前
小刘一定能读C9博完成签到 ,获得积分10
12秒前
13秒前
zjz完成签到,获得积分20
13秒前
桐桐应助shame采纳,获得10
13秒前
高山流水发布了新的文献求助10
14秒前
navazzz罗完成签到,获得积分20
14秒前
15秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3328542
求助须知:如何正确求助?哪些是违规求助? 2958587
关于积分的说明 8591094
捐赠科研通 2636922
什么是DOI,文献DOI怎么找? 1443257
科研通“疑难数据库(出版商)”最低求助积分说明 668576
邀请新用户注册赠送积分活动 655842