A comprehensive and fair comparison of two neural operators (with practical extensions) based on FAIR data

人工神经网络 翼型 计算机科学 操作员(生物学) 算法 领域(数学) 功能(生物学) 人工智能 数学 航空航天工程 工程类 纯数学 化学 抑制因子 基因 生物 转录因子 进化生物学 生物化学
作者
Lu Lu,Xuhui Meng,Shengze Cai,Zhiping Mao,Somdatta Goswami,Zhongqiang Zhang,George Em Karniadakis
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:393: 114778-114778 被引量:335
标识
DOI:10.1016/j.cma.2022.114778
摘要

Neural operators can learn nonlinear mappings between function spaces and offer a new simulation paradigm for real-time prediction of complex dynamics for realistic diverse applications as well as for system identification in science and engineering. Herein, we investigate the performance of two neural operators, which have shown promising results so far, and we develop new practical extensions that will make them more accurate and robust and importantly more suitable for industrial-complexity applications. The first neural operator, DeepONet, was published in 2019 (Lu et al., 2019), and its original architecture was based on the universal approximation theorem of Chen & Chen (1995). The second one, named Fourier Neural Operator or FNO, was published in 2020 (Li et al., 2020), and it is based on parameterizing the integral kernel in the Fourier space. DeepONet is represented by a summation of products of neural networks (NNs), corresponding to the branch NN for the input function and the trunk NN for the output function; both NNs are general architectures, e.g., the branch NN can be replaced with a CNN or a ResNet. According to Kovachki et al. (2021), FNO in its continuous form can be viewed conceptually as a DeepONet with a specific architecture of the branch NN and a trunk NN represented by a trigonometric basis. In order to compare FNO with DeepONet computationally for realistic setups, we develop several extensions of FNO that can deal with complex geometric domains as well as mappings where the input and output function spaces are of different dimensions. We also develop an extended DeepONet with special features that provide inductive bias and accelerate training, and we present a faster implementation of DeepONet with cost comparable to the computational cost of FNO, which is based on the Fast Fourier Transform. We consider 16 different benchmarks to demonstrate the relative performance of the two neural operators, including instability wave analysis in hypersonic boundary layers, prediction of the vorticity field of a flapping airfoil, porous media simulations in complex-geometry domains, etc. We follow the guiding principles of FAIR (Findability, Accessibility, Interoperability, and Reusability) for scientific data management and stewardship. The performance of DeepONet and FNO is comparable for relatively simple settings, but for complex geometries the performance of FNO deteriorates greatly. We also compare theoretically the two neural operators and obtain similar error estimates for DeepONet and FNO under the same regularity assumptions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
小二郎应助周涛采纳,获得10
1秒前
yy发布了新的文献求助20
1秒前
子云发布了新的文献求助10
1秒前
海海完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
无花果应助WSH采纳,获得10
2秒前
晨晨发布了新的文献求助10
2秒前
爆米花应助dyspritos采纳,获得10
2秒前
倪维发布了新的文献求助10
3秒前
沙拉酱完成签到,获得积分20
3秒前
Pamburger完成签到,获得积分10
3秒前
11完成签到,获得积分10
4秒前
5秒前
研友_qZ6wg8发布了新的文献求助30
5秒前
沙拉酱发布了新的文献求助10
6秒前
七田皿发布了新的文献求助10
6秒前
6秒前
7秒前
猫和老鼠发布了新的文献求助20
7秒前
顺利毕业发布了新的文献求助10
8秒前
搜集达人应助漾漾采纳,获得10
8秒前
烟花应助jack采纳,获得10
8秒前
9秒前
科研通AI6应助suansuan采纳,获得10
9秒前
9秒前
灵巧大地完成签到,获得积分10
9秒前
9秒前
喵咪发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
xxxwww完成签到,获得积分10
10秒前
葵小葵完成签到,获得积分10
10秒前
10秒前
任性的飞雪完成签到,获得积分10
10秒前
10秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588119
求助须知:如何正确求助?哪些是违规求助? 4671184
关于积分的说明 14786238
捐赠科研通 4624496
什么是DOI,文献DOI怎么找? 2531592
邀请新用户注册赠送积分活动 1500217
关于科研通互助平台的介绍 1468240