A comprehensive and fair comparison of two neural operators (with practical extensions) based on FAIR data

人工神经网络 翼型 计算机科学 操作员(生物学) 算法 领域(数学) 功能(生物学) 人工智能 数学 航空航天工程 工程类 纯数学 化学 抑制因子 基因 生物 转录因子 进化生物学 生物化学
作者
Lu Lu,Xuhui Meng,Shengze Cai,Zhiping Mao,Somdatta Goswami,Zhongqiang Zhang,George Em Karniadakis
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:393: 114778-114778 被引量:335
标识
DOI:10.1016/j.cma.2022.114778
摘要

Neural operators can learn nonlinear mappings between function spaces and offer a new simulation paradigm for real-time prediction of complex dynamics for realistic diverse applications as well as for system identification in science and engineering. Herein, we investigate the performance of two neural operators, which have shown promising results so far, and we develop new practical extensions that will make them more accurate and robust and importantly more suitable for industrial-complexity applications. The first neural operator, DeepONet, was published in 2019 (Lu et al., 2019), and its original architecture was based on the universal approximation theorem of Chen & Chen (1995). The second one, named Fourier Neural Operator or FNO, was published in 2020 (Li et al., 2020), and it is based on parameterizing the integral kernel in the Fourier space. DeepONet is represented by a summation of products of neural networks (NNs), corresponding to the branch NN for the input function and the trunk NN for the output function; both NNs are general architectures, e.g., the branch NN can be replaced with a CNN or a ResNet. According to Kovachki et al. (2021), FNO in its continuous form can be viewed conceptually as a DeepONet with a specific architecture of the branch NN and a trunk NN represented by a trigonometric basis. In order to compare FNO with DeepONet computationally for realistic setups, we develop several extensions of FNO that can deal with complex geometric domains as well as mappings where the input and output function spaces are of different dimensions. We also develop an extended DeepONet with special features that provide inductive bias and accelerate training, and we present a faster implementation of DeepONet with cost comparable to the computational cost of FNO, which is based on the Fast Fourier Transform. We consider 16 different benchmarks to demonstrate the relative performance of the two neural operators, including instability wave analysis in hypersonic boundary layers, prediction of the vorticity field of a flapping airfoil, porous media simulations in complex-geometry domains, etc. We follow the guiding principles of FAIR (Findability, Accessibility, Interoperability, and Reusability) for scientific data management and stewardship. The performance of DeepONet and FNO is comparable for relatively simple settings, but for complex geometries the performance of FNO deteriorates greatly. We also compare theoretically the two neural operators and obtain similar error estimates for DeepONet and FNO under the same regularity assumptions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
panxixiang发布了新的文献求助10
1秒前
陈艺鹏完成签到,获得积分10
1秒前
Einson完成签到 ,获得积分10
2秒前
12345656656完成签到,获得积分10
2秒前
2秒前
盐于律己发布了新的文献求助10
3秒前
畅快yig完成签到,获得积分10
4秒前
come发布了新的文献求助10
4秒前
4秒前
7秒前
Tonald Yang发布了新的文献求助10
8秒前
8秒前
爱吃草莓和菠萝的吕可爱完成签到,获得积分10
10秒前
榕俊完成签到,获得积分10
10秒前
10秒前
11秒前
李健应助mugglea采纳,获得10
12秒前
科研通AI6应助HudaBala采纳,获得100
12秒前
qqq完成签到,获得积分10
13秒前
CipherSage应助panxixiang采纳,获得10
13秒前
东隅完成签到,获得积分10
14秒前
小爽完成签到,获得积分0
15秒前
谦让疾完成签到,获得积分20
15秒前
姚琛完成签到 ,获得积分10
15秒前
liu完成签到,获得积分10
16秒前
16秒前
17秒前
Hindiii完成签到,获得积分10
17秒前
zhh完成签到,获得积分10
17秒前
18秒前
18秒前
LXJY完成签到,获得积分10
18秒前
19秒前
hhy发布了新的文献求助10
19秒前
20秒前
橘子味完成签到 ,获得积分10
20秒前
hjx发布了新的文献求助10
21秒前
Marksman497发布了新的文献求助10
22秒前
南风发布了新的文献求助10
23秒前
阳光的梦寒完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498797
求助须知:如何正确求助?哪些是违规求助? 4595936
关于积分的说明 14450632
捐赠科研通 4528886
什么是DOI,文献DOI怎么找? 2481758
邀请新用户注册赠送积分活动 1465732
关于科研通互助平台的介绍 1438653