A comprehensive and fair comparison of two neural operators (with practical extensions) based on FAIR data

人工神经网络 翼型 计算机科学 操作员(生物学) 算法 领域(数学) 功能(生物学) 人工智能 数学 航空航天工程 工程类 纯数学 化学 抑制因子 基因 生物 转录因子 进化生物学 生物化学
作者
Lu Lu,Xuhui Meng,Shengze Cai,Zhiping Mao,Somdatta Goswami,Zhongqiang Zhang,George Em Karniadakis
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:393: 114778-114778 被引量:255
标识
DOI:10.1016/j.cma.2022.114778
摘要

Neural operators can learn nonlinear mappings between function spaces and offer a new simulation paradigm for real-time prediction of complex dynamics for realistic diverse applications as well as for system identification in science and engineering. Herein, we investigate the performance of two neural operators, which have shown promising results so far, and we develop new practical extensions that will make them more accurate and robust and importantly more suitable for industrial-complexity applications. The first neural operator, DeepONet, was published in 2019 (Lu et al., 2019), and its original architecture was based on the universal approximation theorem of Chen & Chen (1995). The second one, named Fourier Neural Operator or FNO, was published in 2020 (Li et al., 2020), and it is based on parameterizing the integral kernel in the Fourier space. DeepONet is represented by a summation of products of neural networks (NNs), corresponding to the branch NN for the input function and the trunk NN for the output function; both NNs are general architectures, e.g., the branch NN can be replaced with a CNN or a ResNet. According to Kovachki et al. (2021), FNO in its continuous form can be viewed conceptually as a DeepONet with a specific architecture of the branch NN and a trunk NN represented by a trigonometric basis. In order to compare FNO with DeepONet computationally for realistic setups, we develop several extensions of FNO that can deal with complex geometric domains as well as mappings where the input and output function spaces are of different dimensions. We also develop an extended DeepONet with special features that provide inductive bias and accelerate training, and we present a faster implementation of DeepONet with cost comparable to the computational cost of FNO, which is based on the Fast Fourier Transform. We consider 16 different benchmarks to demonstrate the relative performance of the two neural operators, including instability wave analysis in hypersonic boundary layers, prediction of the vorticity field of a flapping airfoil, porous media simulations in complex-geometry domains, etc. We follow the guiding principles of FAIR (Findability, Accessibility, Interoperability, and Reusability) for scientific data management and stewardship. The performance of DeepONet and FNO is comparable for relatively simple settings, but for complex geometries the performance of FNO deteriorates greatly. We also compare theoretically the two neural operators and obtain similar error estimates for DeepONet and FNO under the same regularity assumptions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyy完成签到,获得积分10
1秒前
小小aa16完成签到,获得积分10
1秒前
小呆荣发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
4秒前
幽默平安发布了新的文献求助10
4秒前
奋斗夏烟发布了新的文献求助10
6秒前
8秒前
ylh完成签到,获得积分10
10秒前
Owen应助幽默平安采纳,获得10
10秒前
乖猫要努力应助YJ888采纳,获得10
11秒前
11秒前
丘比特应助穆羊青采纳,获得10
12秒前
sasa完成签到,获得积分10
12秒前
sadascaqwqw发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
小宇子发布了新的文献求助10
15秒前
15秒前
锤子发布了新的文献求助25
16秒前
奋斗夏烟完成签到,获得积分10
16秒前
16秒前
zzrs发布了新的文献求助10
16秒前
Mo发布了新的文献求助10
18秒前
老大蒂亚戈应助YJ888采纳,获得10
18秒前
欣慰的水瑶完成签到,获得积分10
19秒前
momo发布了新的文献求助10
19秒前
21秒前
22秒前
李小宁发布了新的文献求助10
22秒前
LW完成签到,获得积分10
22秒前
23秒前
小李发布了新的文献求助10
24秒前
ysy完成签到,获得积分10
25秒前
25秒前
25秒前
嘻哈发布了新的文献求助10
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989334
求助须知:如何正确求助?哪些是违规求助? 3531428
关于积分的说明 11253936
捐赠科研通 3270119
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809173