Artificial intelligence-incorporated membrane fouling prediction for membrane-based processes in the past 20 years: A critical review

结垢 膜污染 人工智能 机器学习 生化工程 计算机科学 工艺工程 工程类 化学 生物化学
作者
Chengxin Niu,Xuesong Li,Ruobin Dai,Zhiwei Wang
出处
期刊:Water Research [Elsevier]
卷期号:216: 118299-118299 被引量:126
标识
DOI:10.1016/j.watres.2022.118299
摘要

Membrane fouling is one of major obstacles in the application of membrane technologies. Accurately predicting or simulating membrane fouling behaviours is of great significance to elucidate the fouling mechanisms and develop effective measures to control fouling. Although mechanistic/mathematical models have been widely used for predicting membrane fouling, they still suffer from low accuracy and poor sensitivity. To overcome the limitations of conventional mathematical models, artificial intelligence (AI)-based techniques have been proposed as powerful approaches to predict membrane filtration performance and fouling behaviour. This work aims to present a state-of-the-art review on the advances in AI algorithms (e.g., artificial neural networks, fuzzy logic, genetic programming, support vector machines and search algorithms) for prediction of membrane fouling. The working principles of different AI techniques and their applications for prediction of membrane fouling in different membrane-based processes are discussed in detail. Furthermore, comparisons of the inputs, outputs, and accuracy of different AI approaches for membrane fouling prediction have been conducted based on the literature database. Future research efforts are further highlighted for AI-based techniques aiming for a more accurate prediction of membrane fouling and the optimization of the operation in membrane-based processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
张佳浩发布了新的文献求助30
2秒前
科目三应助斯文明杰采纳,获得10
2秒前
未来完成签到,获得积分10
3秒前
俭朴大碗发布了新的文献求助10
3秒前
4秒前
anqi发布了新的文献求助10
4秒前
4秒前
4秒前
6秒前
陈陈陈发布了新的文献求助10
6秒前
qing发布了新的文献求助10
7秒前
7秒前
酷波er应助Ann采纳,获得10
7秒前
天天快乐应助老实友蕊采纳,获得10
8秒前
俭朴大碗完成签到,获得积分10
8秒前
8秒前
ZQZ发布了新的文献求助10
9秒前
菠萝完成签到 ,获得积分10
9秒前
鳗鱼三毒发布了新的文献求助10
9秒前
SciGPT应助jiajia666采纳,获得10
10秒前
anqi完成签到,获得积分10
10秒前
10秒前
冫义斗完成签到 ,获得积分10
11秒前
12秒前
吕元乔完成签到,获得积分20
13秒前
13秒前
Myrrha完成签到,获得积分10
13秒前
13秒前
15秒前
16秒前
善学以致用应助大炮台采纳,获得10
16秒前
诚c发布了新的文献求助100
16秒前
sxr完成签到,获得积分10
17秒前
17秒前
斯文明杰发布了新的文献求助10
17秒前
17秒前
19秒前
19秒前
19秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3454789
求助须知:如何正确求助?哪些是违规求助? 3049989
关于积分的说明 9020079
捐赠科研通 2738731
什么是DOI,文献DOI怎么找? 1502219
科研通“疑难数据库(出版商)”最低求助积分说明 694453
邀请新用户注册赠送积分活动 693143