材料科学
分析化学(期刊)
功率密度
超临界流体
离子
锂(药物)
X射线光电子能谱
兴奋剂
化学工程
热力学
光电子学
化学
有机化学
工程类
医学
功率(物理)
物理
色谱法
内分泌学
作者
Kiran Kumar Surthi,Kamal K. Kar
出处
期刊:Carbon
[Elsevier]
日期:2022-03-14
卷期号:193: 140-150
被引量:14
标识
DOI:10.1016/j.carbon.2022.02.034
摘要
A unique approach of Co-doping at the Mn site was used to prepare spherical shaped LiMn0.5Co0.5PO4@C ([email protected]) nanoparticles by supercritical fluid hydrothermal method. The high-resolution transmission electron microscopy (HR-TEM) study of [email protected] nano-particles explores that the average diameter of nanospheres is in the range of 7–50 nm. XPS analysis reveals that the Mn/Co-ion exists in the divalent oxidation state. First-principle calculations explore that Co doping increases the operating voltage, specific capacity, gravimetrical energy, and power density. The corresponding theoretical values are 5.23 V, 169.1 mA h g−1, 85.164 kW h kg−1, and 85.164 kW kg−1. At the same time, the theoretical volumetric energy and power densities are 8.008 kWh cm−3 and 8.008 kW cm−3. It also reveals that Co-doping enhances the bulk modulus (∼87 GPa), shear modulus (∼92.5 GPa), and Poisson ratio (0.107). The electrochemical analysis of secondary Li-ion batteries (LIBs) explores that the initial discharge capacities at 0.1 and 100 C are 156.5, and 80 mA h g−1, gravimetrical energy, and power densities are within the range of 591.3–312 W h kg−1 and 312.2 kW kg−1, respectively. All-solid-state thin and flexible LIBs have the initial discharge capacities under different bending states at 0.1 C within the range of 141 - 140 mA h g−1. Volumetric power and energy densities are within the limit of 6.575–6.30 W cm−3 and 0.6575–0.631 W h cm−3, respectively.
科研通智能强力驱动
Strongly Powered by AbleSci AI