Supported Diagnosis of Attention Deficit and Hyperactivity Disorder from EEG Based on Interpretable Kernels for Hidden Markov Models

脑电图 计算机科学 隐马尔可夫模型 人工智能 模式识别(心理学) 注意缺陷多动障碍 支持向量机 机器学习 心理学 语音识别 神经科学 精神科
作者
Maria Camila Maya-Piedrahita,Paula Herrera,L. Berrío-Mesa,David Cárdenas‐Peña,Álvaro Á. Orozco
出处
期刊:International Journal of Neural Systems [World Scientific]
卷期号:32 (03) 被引量:6
标识
DOI:10.1142/s0129065722500083
摘要

As a neurodevelopmental pathology, Attention Deficit Hyperactivity Disorder (ADHD) mainly arises during childhood. Persistent patterns of generalized inattention, impulsivity, or hyperactivity characterize ADHD that may persist into adulthood. The conventional diagnosis relies on clinical observational processes yielding high rates of overdiagnosis due to varying interpretations among specialists or missing information. Although several studies have designed objective behavioral features to overcome such an issue, they lack significance. Despite electroencephalography (EEG) analyses extracting alternative biomarkers using signal processing techniques, the nonlinearity and nonstationarity of EEG signals restrain performance and generalization of hand-crafted features. This work proposes a methodology to support ADHD diagnosis by characterizing EEG signals from hidden Markov models (HMM), classifying subjects based on similarity measures for probability functions, and spatially interpreting the results using graphic embeddings of stochastic dynamic models. The methodology learns a single HMM for EEG signal from each patient, so favoring the inter-subject variability. Then, the Probability Product Kernel, specifically developed for assessing the similarity between HMMs, fed a support vector machine that classifies subjects according to their stochastic dynamics. Lastly, the kernel variant of Principal Component Analysis provided a means to visualize the EEG transitions in a two-dimensional space, evidencing dynamic differences between ADHD and Healthy Control children. From the electrophysiological perspective, we recorded EEG under the Stop Signal Task modified with reward levels, which considers cognitive features of interest as insufficient motivational circuits recruitment. The methodology compares the supported diagnosis in two EEG channel setups (whole channel set and channels of interest in frontocentral area) and four frequency bands (Theta, Alpha, Beta rhythms, and a wideband). Results evidence an accuracy rate of 97.0% in the Beta band and in the channels where previous works found error-related negativity events. Such accuracy rate strongly supports the dual pathway hypothesis and motivational deficit concerning the pathophysiology of ADHD. It also demonstrates the utility of joining inhibitory and motivational paradigms with dynamic EEG analysis into a noninvasive and affordable diagnostic tool for ADHD patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
逝水完成签到 ,获得积分10
刚刚
3秒前
drtianyunhong完成签到,获得积分10
9秒前
bestbanana发布了新的文献求助10
10秒前
13秒前
fufufu123完成签到 ,获得积分10
13秒前
iehaoang完成签到 ,获得积分10
15秒前
电子屎壳郎完成签到,获得积分10
16秒前
七子完成签到 ,获得积分10
19秒前
luoyukejing完成签到,获得积分10
21秒前
slsdianzi完成签到,获得积分10
24秒前
大个应助bestbanana采纳,获得10
28秒前
28秒前
喜悦的鬼神完成签到 ,获得积分10
35秒前
congcong完成签到 ,获得积分10
36秒前
你好完成签到 ,获得积分10
38秒前
mrwang完成签到 ,获得积分10
39秒前
小杨完成签到,获得积分10
43秒前
24K纯帅完成签到,获得积分10
47秒前
whitepiece完成签到,获得积分10
57秒前
xiaosui完成签到 ,获得积分10
1分钟前
青青草原阿懒完成签到,获得积分10
1分钟前
maggiexjl完成签到 ,获得积分10
1分钟前
T_MC郭完成签到,获得积分10
1分钟前
鞑靼完成签到 ,获得积分10
1分钟前
扬帆起航完成签到 ,获得积分10
1分钟前
聪明凌柏完成签到 ,获得积分10
1分钟前
北城完成签到 ,获得积分10
1分钟前
Eason Liu完成签到,获得积分10
1分钟前
我桽完成签到 ,获得积分10
1分钟前
研友_ZA2B68完成签到,获得积分10
1分钟前
JamesPei应助一个小胖子采纳,获得10
1分钟前
mzrrong完成签到 ,获得积分10
1分钟前
善良元芹完成签到 ,获得积分10
1分钟前
Oct完成签到 ,获得积分10
1分钟前
jt完成签到 ,获得积分10
2分钟前
娜na完成签到 ,获得积分10
2分钟前
Regina完成签到 ,获得积分10
2分钟前
人类不宜飞行完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134035
求助须知:如何正确求助?哪些是违规求助? 2784845
关于积分的说明 7768880
捐赠科研通 2440255
什么是DOI,文献DOI怎么找? 1297353
科研通“疑难数据库(出版商)”最低求助积分说明 624928
版权声明 600792