Efficient Recognition and Automatic Sorting Technology of Waste Textiles Based on Online Near infrared Spectroscopy and Convolutional Neural Network

卷积神经网络 人工智能 分类 红外线的 模式识别(心理学) 计算机科学 光谱学 红外光谱学 人工神经网络 化学 算法 物理 光学 有机化学 量子力学
作者
Wenqian Du,Jiahui Zheng,Wenxia Li,Zhengdong Liu,Huaping Wang,Han Xi
出处
期刊:Resources Conservation and Recycling [Elsevier BV]
卷期号:180: 106157-106157 被引量:68
标识
DOI:10.1016/j.resconrec.2022.106157
摘要

• An intelligent, efficient, environmentally friendly and non-destructive identification and sorting technology for waste textiles is provided. • An online NIR qualitative identification model of 13 kinds of waste textiles is established by the convolutional neural network . • The accuracy of online identification and sorting for 13 kinds of waste textiles is above 95%. • The online recognition and sorting time of each sample is less than 2 s. In order to better recycle waste textiles and save resources, intelligent identification and sorting equipment and technology are urgently needed. In this work, an online near infrared (NIR) spectral library was established by utilizing self-developed online NIR device, including polyester, cotton, wool, silk, viscose, nylon, acrylic, polyester/cotton, polyester/wool, polyester/nylon, polyester/viscose, nylon/spandex and silk/cotton. Importantly, artificial intelligence technology was introduced into the identification and sorting of waste textiles, and two online NIR qualitative identification models covering above 13 kinds of waste textiles were constructed by the convolutional neural network (CNN) and Baidu deep learning platform PaddlePaddle. First, the input one-dimensional spectral data (901-2500 nm) was normalized and converted into a two-dimensional grayscale image of 40*40 pixels. Then feature extraction, compression and dimension reduction of multiple spectra were carried out through convolution and pooling. Finally, the category probability value of each kind of waste textiles was calculated by the CNN model and the maximum value was taken as the final classification of the fabric. Online identification tests were performed using 526 samples as an external validation set, presenting an accuracy of two CNN qualitative identification models were both more than 95.4%. In addition, the accuracy of online identification and sorting was above 95%, and the recognition and sorting time of each sample is less than 2 s, which can perform the efficient identification and automatic sorting of waste textiles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
1秒前
lei完成签到,获得积分20
1秒前
HW发布了新的文献求助10
1秒前
冷静书白完成签到 ,获得积分20
2秒前
旦旦发布了新的文献求助10
3秒前
spring完成签到,获得积分10
4秒前
卡拉几黑发布了新的文献求助10
4秒前
lei发布了新的文献求助10
4秒前
饱满服饰发布了新的文献求助10
5秒前
852应助涨涨涨采纳,获得10
5秒前
5秒前
丘比特应助萧怡采纳,获得10
5秒前
5秒前
芋泥啵啵完成签到,获得积分10
5秒前
朱莹莹发布了新的文献求助10
5秒前
6秒前
PYM发布了新的文献求助10
6秒前
科研通AI5应助鸢尾采纳,获得10
6秒前
xzy998应助fjljylm采纳,获得10
7秒前
7秒前
7秒前
杨佳文完成签到,获得积分20
7秒前
7秒前
8秒前
成就灭龙完成签到,获得积分10
8秒前
李李完成签到,获得积分10
9秒前
10秒前
10秒前
喻萃发布了新的文献求助10
11秒前
冯涛完成签到,获得积分10
12秒前
12秒前
星辰大海应助未来采纳,获得10
12秒前
12秒前
科研通AI5应助淡然采纳,获得30
12秒前
蒸馏水完成签到 ,获得积分10
13秒前
李李发布了新的文献求助10
13秒前
Kotory完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5086165
求助须知:如何正确求助?哪些是违规求助? 4302062
关于积分的说明 13406546
捐赠科研通 4127185
什么是DOI,文献DOI怎么找? 2260201
邀请新用户注册赠送积分活动 1264382
关于科研通互助平台的介绍 1198584