亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Efficient Recognition and Automatic Sorting Technology of Waste Textiles Based on Online Near infrared Spectroscopy and Convolutional Neural Network

卷积神经网络 人工智能 分类 红外线的 模式识别(心理学) 计算机科学 光谱学 红外光谱学 人工神经网络 化学 算法 物理 光学 有机化学 量子力学
作者
Wenqian Du,Jiahui Zheng,Wenxia Li,Zhengdong Liu,Huaping Wang,Han Xi
出处
期刊:Resources Conservation and Recycling [Elsevier]
卷期号:180: 106157-106157 被引量:68
标识
DOI:10.1016/j.resconrec.2022.106157
摘要

• An intelligent, efficient, environmentally friendly and non-destructive identification and sorting technology for waste textiles is provided. • An online NIR qualitative identification model of 13 kinds of waste textiles is established by the convolutional neural network . • The accuracy of online identification and sorting for 13 kinds of waste textiles is above 95%. • The online recognition and sorting time of each sample is less than 2 s. In order to better recycle waste textiles and save resources, intelligent identification and sorting equipment and technology are urgently needed. In this work, an online near infrared (NIR) spectral library was established by utilizing self-developed online NIR device, including polyester, cotton, wool, silk, viscose, nylon, acrylic, polyester/cotton, polyester/wool, polyester/nylon, polyester/viscose, nylon/spandex and silk/cotton. Importantly, artificial intelligence technology was introduced into the identification and sorting of waste textiles, and two online NIR qualitative identification models covering above 13 kinds of waste textiles were constructed by the convolutional neural network (CNN) and Baidu deep learning platform PaddlePaddle. First, the input one-dimensional spectral data (901-2500 nm) was normalized and converted into a two-dimensional grayscale image of 40*40 pixels. Then feature extraction, compression and dimension reduction of multiple spectra were carried out through convolution and pooling. Finally, the category probability value of each kind of waste textiles was calculated by the CNN model and the maximum value was taken as the final classification of the fabric. Online identification tests were performed using 526 samples as an external validation set, presenting an accuracy of two CNN qualitative identification models were both more than 95.4%. In addition, the accuracy of online identification and sorting was above 95%, and the recognition and sorting time of each sample is less than 2 s, which can perform the efficient identification and automatic sorting of waste textiles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Augustines完成签到,获得积分10
6秒前
小巧的芙蓉完成签到,获得积分10
11秒前
knight7m完成签到 ,获得积分10
32秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
桐桐应助眼睛大的松鼠采纳,获得10
1分钟前
脑洞疼应助危机的尔琴采纳,获得10
1分钟前
wangfaqing942完成签到 ,获得积分10
1分钟前
深情安青应助inRe采纳,获得10
1分钟前
wanci应助inRe采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
简啦啦完成签到 ,获得积分10
4分钟前
热情的橙汁完成签到,获得积分10
4分钟前
寒泉发布了新的文献求助50
4分钟前
我哪知道怎么完成签到 ,获得积分10
4分钟前
成就小蜜蜂完成签到 ,获得积分10
5分钟前
飞飞style完成签到,获得积分10
5分钟前
6分钟前
疯狂的绿蝶完成签到 ,获得积分10
6分钟前
inRe发布了新的文献求助10
6分钟前
6分钟前
草木发布了新的文献求助10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
Lenna45完成签到 ,获得积分10
6分钟前
6分钟前
草木发布了新的文献求助10
6分钟前
6分钟前
传奇3应助科研通管家采纳,获得10
6分钟前
jin666发布了新的文献求助30
7分钟前
饼干肥熊完成签到 ,获得积分10
7分钟前
草木发布了新的文献求助10
7分钟前
科研通AI6应助QI采纳,获得10
7分钟前
jin666完成签到,获得积分20
7分钟前
陆上飞完成签到,获得积分10
7分钟前
寒泉完成签到,获得积分10
7分钟前
Selena发布了新的文献求助10
8分钟前
CipherSage应助Selena采纳,获得10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Bone Marrow Immunohistochemistry 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5628431
求助须知:如何正确求助?哪些是违规求助? 4716950
关于积分的说明 14964262
捐赠科研通 4786167
什么是DOI,文献DOI怎么找? 2555660
邀请新用户注册赠送积分活动 1516899
关于科研通互助平台的介绍 1477502