Efficient Recognition and Automatic Sorting Technology of Waste Textiles Based on Online Near infrared Spectroscopy and Convolutional Neural Network

卷积神经网络 人工智能 分类 红外线的 模式识别(心理学) 计算机科学 光谱学 红外光谱学 人工神经网络 化学 算法 物理 光学 有机化学 量子力学
作者
Wenqian Du,Jiahui Zheng,Wenxia Li,Zhengdong Liu,Huaping Wang,Han Xi
出处
期刊:Resources Conservation and Recycling [Elsevier]
卷期号:180: 106157-106157 被引量:68
标识
DOI:10.1016/j.resconrec.2022.106157
摘要

• An intelligent, efficient, environmentally friendly and non-destructive identification and sorting technology for waste textiles is provided. • An online NIR qualitative identification model of 13 kinds of waste textiles is established by the convolutional neural network . • The accuracy of online identification and sorting for 13 kinds of waste textiles is above 95%. • The online recognition and sorting time of each sample is less than 2 s. In order to better recycle waste textiles and save resources, intelligent identification and sorting equipment and technology are urgently needed. In this work, an online near infrared (NIR) spectral library was established by utilizing self-developed online NIR device, including polyester, cotton, wool, silk, viscose, nylon, acrylic, polyester/cotton, polyester/wool, polyester/nylon, polyester/viscose, nylon/spandex and silk/cotton. Importantly, artificial intelligence technology was introduced into the identification and sorting of waste textiles, and two online NIR qualitative identification models covering above 13 kinds of waste textiles were constructed by the convolutional neural network (CNN) and Baidu deep learning platform PaddlePaddle. First, the input one-dimensional spectral data (901-2500 nm) was normalized and converted into a two-dimensional grayscale image of 40*40 pixels. Then feature extraction, compression and dimension reduction of multiple spectra were carried out through convolution and pooling. Finally, the category probability value of each kind of waste textiles was calculated by the CNN model and the maximum value was taken as the final classification of the fabric. Online identification tests were performed using 526 samples as an external validation set, presenting an accuracy of two CNN qualitative identification models were both more than 95.4%. In addition, the accuracy of online identification and sorting was above 95%, and the recognition and sorting time of each sample is less than 2 s, which can perform the efficient identification and automatic sorting of waste textiles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助壮观手套采纳,获得10
刚刚
濮阳香发布了新的文献求助10
刚刚
刚刚
大模型应助可口可乐采纳,获得10
刚刚
南苏发布了新的文献求助10
刚刚
刘天义发布了新的文献求助10
刚刚
长情笑柳应助李龙波采纳,获得10
1秒前
老实的电源完成签到,获得积分10
1秒前
Peng发布了新的文献求助10
2秒前
Andyfragrance完成签到,获得积分10
2秒前
2秒前
小蘑菇应助velsaber采纳,获得10
2秒前
2秒前
英俊的铭应助cz采纳,获得10
3秒前
烟花应助ZiZi采纳,获得10
4秒前
4秒前
思源应助郑zheng采纳,获得10
4秒前
77发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
wwwwppp完成签到,获得积分10
5秒前
6秒前
英姑应助你是我的唯一采纳,获得10
7秒前
薛定谔的科研人完成签到,获得积分10
7秒前
云边完成签到,获得积分10
7秒前
8秒前
8秒前
vikoel发布了新的文献求助10
8秒前
传奇3应助JYY_slby采纳,获得10
9秒前
9秒前
orixero应助Peng采纳,获得10
9秒前
科研通AI6应助任梁辰采纳,获得10
9秒前
jim_hacker完成签到,获得积分10
9秒前
9秒前
CC应助月yue采纳,获得10
9秒前
10秒前
Uacthee完成签到,获得积分10
11秒前
垃圾二硫自组装纳米粒完成签到,获得积分10
12秒前
卡皮巴拉完成签到,获得积分20
12秒前
小马甲应助醒醒采纳,获得10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
按地区划分的1,091个公共养老金档案列表 801
Work, Vacation and Well-being 500
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Rural Geographies People, Place and the Countryside 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5410713
求助须知:如何正确求助?哪些是违规求助? 4528079
关于积分的说明 14114318
捐赠科研通 4442786
什么是DOI,文献DOI怎么找? 2438020
邀请新用户注册赠送积分活动 1430164
关于科研通互助平台的介绍 1408008