已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Efficient Recognition and Automatic Sorting Technology of Waste Textiles Based on Online Near infrared Spectroscopy and Convolutional Neural Network

卷积神经网络 人工智能 分类 红外线的 模式识别(心理学) 计算机科学 光谱学 红外光谱学 人工神经网络 化学 算法 物理 光学 有机化学 量子力学
作者
Wenqian Du,Jiahui Zheng,Wenxia Li,Zhengdong Liu,Huaping Wang,Han Xi
出处
期刊:Resources Conservation and Recycling [Elsevier]
卷期号:180: 106157-106157 被引量:68
标识
DOI:10.1016/j.resconrec.2022.106157
摘要

• An intelligent, efficient, environmentally friendly and non-destructive identification and sorting technology for waste textiles is provided. • An online NIR qualitative identification model of 13 kinds of waste textiles is established by the convolutional neural network . • The accuracy of online identification and sorting for 13 kinds of waste textiles is above 95%. • The online recognition and sorting time of each sample is less than 2 s. In order to better recycle waste textiles and save resources, intelligent identification and sorting equipment and technology are urgently needed. In this work, an online near infrared (NIR) spectral library was established by utilizing self-developed online NIR device, including polyester, cotton, wool, silk, viscose, nylon, acrylic, polyester/cotton, polyester/wool, polyester/nylon, polyester/viscose, nylon/spandex and silk/cotton. Importantly, artificial intelligence technology was introduced into the identification and sorting of waste textiles, and two online NIR qualitative identification models covering above 13 kinds of waste textiles were constructed by the convolutional neural network (CNN) and Baidu deep learning platform PaddlePaddle. First, the input one-dimensional spectral data (901-2500 nm) was normalized and converted into a two-dimensional grayscale image of 40*40 pixels. Then feature extraction, compression and dimension reduction of multiple spectra were carried out through convolution and pooling. Finally, the category probability value of each kind of waste textiles was calculated by the CNN model and the maximum value was taken as the final classification of the fabric. Online identification tests were performed using 526 samples as an external validation set, presenting an accuracy of two CNN qualitative identification models were both more than 95.4%. In addition, the accuracy of online identification and sorting was above 95%, and the recognition and sorting time of each sample is less than 2 s, which can perform the efficient identification and automatic sorting of waste textiles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
什么什么完成签到,获得积分10
1秒前
XIEQ发布了新的文献求助10
3秒前
捌柒陆发布了新的文献求助80
3秒前
学术大拿完成签到 ,获得积分10
4秒前
尾状叶完成签到 ,获得积分10
4秒前
求文献发布了新的文献求助10
5秒前
梓念发布了新的文献求助10
5秒前
玛卡巴卡完成签到 ,获得积分10
7秒前
7秒前
墨墨Daisy完成签到,获得积分20
9秒前
李健应助捌柒陆采纳,获得10
10秒前
10秒前
好好好完成签到 ,获得积分10
13秒前
13秒前
Owen应助时尚的芹采纳,获得10
15秒前
小马甲应助灵巧大地采纳,获得10
18秒前
18秒前
18秒前
英俊的铭应助bai采纳,获得10
19秒前
古风完成签到 ,获得积分10
20秒前
LINGXINYUE发布了新的文献求助20
20秒前
沐启完成签到 ,获得积分10
21秒前
魔丸学医完成签到,获得积分10
23秒前
冷静雨南完成签到 ,获得积分10
24秒前
25秒前
27秒前
28秒前
meow完成签到 ,获得积分10
28秒前
时尚的芹发布了新的文献求助10
30秒前
31秒前
31秒前
无私平彤完成签到,获得积分10
31秒前
bai发布了新的文献求助10
32秒前
一一发布了新的文献求助10
32秒前
pure完成签到 ,获得积分10
33秒前
反季发布了新的文献求助10
33秒前
xkai关注了科研通微信公众号
34秒前
34秒前
喜悦发布了新的文献求助10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 640
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573086
求助须知:如何正确求助?哪些是违规求助? 4659218
关于积分的说明 14724003
捐赠科研通 4599058
什么是DOI,文献DOI怎么找? 2524103
邀请新用户注册赠送积分活动 1494642
关于科研通互助平台的介绍 1464679