亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Efficient Recognition and Automatic Sorting Technology of Waste Textiles Based on Online Near infrared Spectroscopy and Convolutional Neural Network

卷积神经网络 人工智能 分类 红外线的 模式识别(心理学) 计算机科学 光谱学 红外光谱学 人工神经网络 化学 算法 物理 光学 有机化学 量子力学
作者
Wenqian Du,Jiahui Zheng,Wenxia Li,Zhengdong Liu,Huaping Wang,Han Xi
出处
期刊:Resources Conservation and Recycling [Elsevier]
卷期号:180: 106157-106157 被引量:68
标识
DOI:10.1016/j.resconrec.2022.106157
摘要

• An intelligent, efficient, environmentally friendly and non-destructive identification and sorting technology for waste textiles is provided. • An online NIR qualitative identification model of 13 kinds of waste textiles is established by the convolutional neural network . • The accuracy of online identification and sorting for 13 kinds of waste textiles is above 95%. • The online recognition and sorting time of each sample is less than 2 s. In order to better recycle waste textiles and save resources, intelligent identification and sorting equipment and technology are urgently needed. In this work, an online near infrared (NIR) spectral library was established by utilizing self-developed online NIR device, including polyester, cotton, wool, silk, viscose, nylon, acrylic, polyester/cotton, polyester/wool, polyester/nylon, polyester/viscose, nylon/spandex and silk/cotton. Importantly, artificial intelligence technology was introduced into the identification and sorting of waste textiles, and two online NIR qualitative identification models covering above 13 kinds of waste textiles were constructed by the convolutional neural network (CNN) and Baidu deep learning platform PaddlePaddle. First, the input one-dimensional spectral data (901-2500 nm) was normalized and converted into a two-dimensional grayscale image of 40*40 pixels. Then feature extraction, compression and dimension reduction of multiple spectra were carried out through convolution and pooling. Finally, the category probability value of each kind of waste textiles was calculated by the CNN model and the maximum value was taken as the final classification of the fabric. Online identification tests were performed using 526 samples as an external validation set, presenting an accuracy of two CNN qualitative identification models were both more than 95.4%. In addition, the accuracy of online identification and sorting was above 95%, and the recognition and sorting time of each sample is less than 2 s, which can perform the efficient identification and automatic sorting of waste textiles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助lin采纳,获得50
2秒前
大川页完成签到,获得积分10
3秒前
5秒前
9秒前
123发布了新的文献求助10
11秒前
13秒前
应三问发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
17秒前
21秒前
22秒前
迅速初柳发布了新的文献求助10
25秒前
Alberat发布了新的文献求助10
26秒前
26秒前
29秒前
小二郎应助迅速初柳采纳,获得10
31秒前
35秒前
悦耳青梦发布了新的文献求助10
38秒前
卷毛维安完成签到 ,获得积分10
40秒前
迷路的沛芹完成签到 ,获得积分0
40秒前
42秒前
丁一发布了新的文献求助20
42秒前
科研通AI6.1应助LucyMartinez采纳,获得10
45秒前
Meyako完成签到 ,获得积分0
47秒前
48秒前
Jasper应助悦耳青梦采纳,获得10
48秒前
LucyMartinez完成签到,获得积分10
53秒前
韦鑫龙完成签到,获得积分10
54秒前
LG应助科研通管家采纳,获得10
56秒前
56秒前
null应助科研通管家采纳,获得10
56秒前
null应助科研通管家采纳,获得10
56秒前
null应助科研通管家采纳,获得10
56秒前
快乐若云应助科研通管家采纳,获得10
56秒前
null应助科研通管家采纳,获得10
56秒前
null应助科研通管家采纳,获得10
56秒前
56秒前
null应助科研通管家采纳,获得10
56秒前
LG应助科研通管家采纳,获得10
57秒前
null应助科研通管家采纳,获得10
57秒前
斯文败类应助科研通管家采纳,获得10
57秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746460
求助须知:如何正确求助?哪些是违规求助? 5434797
关于积分的说明 15355420
捐赠科研通 4886401
什么是DOI,文献DOI怎么找? 2627238
邀请新用户注册赠送积分活动 1575707
关于科研通互助平台的介绍 1532471