Impact of feature harmonization on radiogenomics analysis: Prediction of EGFR and KRAS mutations from non-small cell lung cancer PET/CT images

克拉斯 单变量 放射基因组学 接收机工作特性 多元分析 多元统计 医学 单变量分析 人工智能 特征选择 肿瘤科 癌症 内科学 计算机科学 机器学习 结直肠癌 无线电技术
作者
Isaac Shiri,Mehdi Amini,Mostafa Nazari,Ghasem Hajianfar,Atlas Haddadi Avval,Hamid Abdollahi,Mehrdad Oveisi,Hossein Arabi,Arman Rahmim,Habib Zaidi
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:142: 105230-105230 被引量:62
标识
DOI:10.1016/j.compbiomed.2022.105230
摘要

To investigate the impact of harmonization on the performance of CT, PET, and fused PET/CT radiomic features toward the prediction of mutations status, for epidermal growth factor receptor (EGFR) and Kirsten rat sarcoma viral oncogene (KRAS) genes in non-small cell lung cancer (NSCLC) patients.Radiomic features were extracted from tumors delineated on CT, PET, and wavelet fused PET/CT images obtained from 136 histologically proven NSCLC patients. Univariate and multivariate predictive models were developed using radiomic features before and after ComBat harmonization to predict EGFR and KRAS mutation statuses. Multivariate models were built using minimum redundancy maximum relevance feature selection and random forest classifier. We utilized 70/30% splitting patient datasets for training/testing, respectively, and repeated the procedure 10 times. The area under the receiver operator characteristic curve (AUC), accuracy, sensitivity, and specificity were used to assess model performance. The performance of the models (univariate and multivariate), before and after ComBat harmonization was compared using statistical analyses.While the performance of most features in univariate modeling was significantly improved for EGFR prediction, most features did not show any significant difference in performance after harmonization in KRAS prediction. Average AUCs of all multivariate predictive models for both EGFR and KRAS were significantly improved (q-value < 0.05) following ComBat harmonization. The mean ranges of AUCs increased following harmonization from 0.87-0.90 to 0.92-0.94 for EGFR, and from 0.85-0.90 to 0.91-0.94 for KRAS. The highest performance was achieved by harmonized F_R0.66_W0.75 model with AUC of 0.94, and 0.93 for EGFR and KRAS, respectively.Our results demonstrated that regarding univariate modelling, while ComBat harmonization had generally a better impact on features for EGFR compared to KRAS status prediction, its effect is feature-dependent. Hence, no systematic effect was observed. Regarding the multivariate models, ComBat harmonization significantly improved the performance of all radiomics models toward more successful prediction of EGFR and KRAS mutation statuses in lung cancer patients. Thus, by eliminating the batch effect in multi-centric radiomic feature sets, harmonization is a promising tool for developing robust and reproducible radiomics using vast and variant datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
星辰大海应助陈阳采纳,获得10
刚刚
玉玉鼠发布了新的文献求助10
刚刚
1秒前
大可发布了新的文献求助30
1秒前
闪闪乌龟发布了新的文献求助10
1秒前
1秒前
wen发布了新的文献求助10
1秒前
语物完成签到,获得积分10
1秒前
2秒前
jiejie发布了新的文献求助10
2秒前
我是老大应助HEIHEI采纳,获得10
3秒前
深情安青应助五小采纳,获得10
3秒前
3秒前
芽芽乐完成签到,获得积分10
4秒前
蜡笔小新发布了新的文献求助10
4秒前
4秒前
5秒前
思维隋完成签到 ,获得积分10
5秒前
Lucas应助科研小白菜采纳,获得10
5秒前
5秒前
朴实绝悟完成签到,获得积分10
6秒前
搜集达人应助zhuangyuan采纳,获得10
6秒前
华国锋完成签到,获得积分10
6秒前
6秒前
常常完成签到 ,获得积分10
6秒前
wwwww123完成签到,获得积分10
6秒前
6秒前
长医德莱文完成签到,获得积分10
6秒前
7秒前
xiaorang完成签到,获得积分10
7秒前
7秒前
HH完成签到,获得积分10
8秒前
gej完成签到,获得积分10
8秒前
吴彦祖完成签到,获得积分10
8秒前
8秒前
July应助科研通管家采纳,获得10
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
小二郎应助科研通管家采纳,获得10
8秒前
Jasper应助科研通管家采纳,获得10
9秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016558
求助须知:如何正确求助?哪些是违规求助? 3556732
关于积分的说明 11322479
捐赠科研通 3289455
什么是DOI,文献DOI怎么找? 1812490
邀请新用户注册赠送积分活动 888053
科研通“疑难数据库(出版商)”最低求助积分说明 812074