计算机科学
前馈
感知器
残余物
人工智能
图像(数学)
图层(电子)
编码(集合论)
翻译(生物学)
模式识别(心理学)
独立同分布随机变量
机器学习
人工神经网络
简单(哲学)
网络体系结构
上下文图像分类
算法
集合(抽象数据类型)
数学
工程类
统计
计算机网络
哲学
化学
生物化学
认识论
随机变量
程序设计语言
有机化学
控制工程
信使核糖核酸
基因
作者
Hugo Touvron,Piotr Bojanowski,Mathilde Caron,Matthieu Cord,Alaaeldin El-Nouby,Édouard Grave,Gautier Izacard,Armand Joulin,Gabriel Synnaeve,Jakob Verbeek,Hervé Jeǵou
出处
期刊:Cornell University - arXiv
日期:2021-01-01
被引量:5
标识
DOI:10.48550/arxiv.2105.03404
摘要
We present ResMLP, an architecture built entirely upon multi-layer perceptrons for image classification. It is a simple residual network that alternates (i) a linear layer in which image patches interact, independently and identically across channels, and (ii) a two-layer feed-forward network in which channels interact independently per patch. When trained with a modern training strategy using heavy data-augmentation and optionally distillation, it attains surprisingly good accuracy/complexity trade-offs on ImageNet. We also train ResMLP models in a self-supervised setup, to further remove priors from employing a labelled dataset. Finally, by adapting our model to machine translation we achieve surprisingly good results. We share pre-trained models and our code based on the Timm library.
科研通智能强力驱动
Strongly Powered by AbleSci AI