Deep Learning Models for Time-History Prediction of Vehicle-Induced Bridge Responses: A Comparative Study

计算机科学 桥(图论) 深度学习 人工神经网络 卷积神经网络 人工智能 前馈 循环神经网络 机器学习 控制工程 工程类 医学 内科学
作者
Huile Li,Tianyu Wang,Judy P. Yang,Gang Wu
出处
期刊:International Journal of Structural Stability and Dynamics [World Scientific]
卷期号:23 (01) 被引量:19
标识
DOI:10.1142/s0219455423500049
摘要

Time-history responses of the bridge induced by the moving vehicle provide crucial information for bridge design, operation, maintenance, etc. As inspired by this, this work attempts to provide a new paradigm for vehicle–bridge interaction (VBI) by highlighting the comparison of different deep learning algorithms applied to the prediction of time-history responses of the bridge under vehicular loads. Particularly, three deep learning architectures with few and measurable input features developed by using fully-connected feedforward neural network, long short-term memory (LSTM) network, and convolutional neural network (CNN) are proposed on the basis of the governing equation of bridge vibrations. Three VBI systems with various vehicle models are developed and further validated to produce reliable training data. To examine the accuracy of the predictive models, two advanced metrics are exploited for time-history estimate. Moreover, the proposed deep learning models are comprehensively investigated through a parametric study on the influential factors associated with the VBI system and network architecture. The results show that deep feedforward neural network (DFNN), LSTM network, and CNN can be applied in VBI analysis to estimate the bridge time-history response. The three neural networks have comparable prediction accuracies. When considering the irregularity excitation, CNN is found to be the most efficient predictive model, while DFNN needs the least training time under perfect bridge surface condition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助舒适寒松采纳,获得10
刚刚
七七完成签到,获得积分10
1秒前
zengyiyong发布了新的文献求助20
1秒前
酥瓜完成签到 ,获得积分10
1秒前
3秒前
嗯呐完成签到,获得积分10
3秒前
斯利普发布了新的文献求助10
3秒前
4秒前
4秒前
松果完成签到 ,获得积分10
4秒前
激昂的寒荷完成签到 ,获得积分10
6秒前
大模型应助鲤鱼凛采纳,获得10
7秒前
7秒前
木木完成签到,获得积分10
7秒前
科研小天才完成签到,获得积分10
7秒前
7秒前
QQQ发布了新的文献求助10
8秒前
10秒前
smm发布了新的文献求助10
10秒前
DengJJJ完成签到,获得积分10
10秒前
苗条书桃完成签到,获得积分10
11秒前
11秒前
11秒前
石远夫发布了新的文献求助10
13秒前
孤独的璎发布了新的文献求助10
14秒前
酆芷蕊完成签到,获得积分10
15秒前
务实的雨文完成签到,获得积分10
15秒前
wanci应助随便取采纳,获得10
16秒前
16秒前
16秒前
嘻嘻哈哈发布了新的文献求助30
18秒前
沈彬彬发布了新的文献求助30
18秒前
清风应助来份披萨采纳,获得10
19秒前
可爱的函函应助淡淡大山采纳,获得10
20秒前
矜暮发布了新的文献求助10
21秒前
23秒前
23秒前
科研通AI2S应助王泽文采纳,获得10
25秒前
科研通AI6应助花玥鹿采纳,获得20
25秒前
ZXW完成签到,获得积分10
25秒前
高分求助中
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5242926
求助须知:如何正确求助?哪些是违规求助? 4409419
关于积分的说明 13725025
捐赠科研通 4278725
什么是DOI,文献DOI怎么找? 2347766
邀请新用户注册赠送积分活动 1345048
关于科研通互助平台的介绍 1303084