Deep Learning Models for Time-History Prediction of Vehicle-Induced Bridge Responses: A Comparative Study

计算机科学 桥(图论) 深度学习 人工神经网络 卷积神经网络 人工智能 前馈 循环神经网络 机器学习 控制工程 工程类 医学 内科学
作者
Huile Li,Tianyu Wang,Judy P. Yang,Gang Wu
出处
期刊:International Journal of Structural Stability and Dynamics [World Scientific]
卷期号:23 (01) 被引量:19
标识
DOI:10.1142/s0219455423500049
摘要

Time-history responses of the bridge induced by the moving vehicle provide crucial information for bridge design, operation, maintenance, etc. As inspired by this, this work attempts to provide a new paradigm for vehicle–bridge interaction (VBI) by highlighting the comparison of different deep learning algorithms applied to the prediction of time-history responses of the bridge under vehicular loads. Particularly, three deep learning architectures with few and measurable input features developed by using fully-connected feedforward neural network, long short-term memory (LSTM) network, and convolutional neural network (CNN) are proposed on the basis of the governing equation of bridge vibrations. Three VBI systems with various vehicle models are developed and further validated to produce reliable training data. To examine the accuracy of the predictive models, two advanced metrics are exploited for time-history estimate. Moreover, the proposed deep learning models are comprehensively investigated through a parametric study on the influential factors associated with the VBI system and network architecture. The results show that deep feedforward neural network (DFNN), LSTM network, and CNN can be applied in VBI analysis to estimate the bridge time-history response. The three neural networks have comparable prediction accuracies. When considering the irregularity excitation, CNN is found to be the most efficient predictive model, while DFNN needs the least training time under perfect bridge surface condition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zjl900111发布了新的文献求助10
刚刚
1秒前
2秒前
现代的紫霜完成签到,获得积分10
2秒前
乐观思萱完成签到,获得积分20
2秒前
2秒前
3秒前
4秒前
nbing发布了新的文献求助10
4秒前
4秒前
YamDaamCaa应助饱满的靖易采纳,获得30
4秒前
慕青应助霸王丸采纳,获得30
4秒前
淡淡从安发布了新的文献求助100
4秒前
嬛嬛发布了新的文献求助10
5秒前
252525发布了新的文献求助10
5秒前
小二郎应助ly采纳,获得10
5秒前
5秒前
kkaky发布了新的文献求助10
5秒前
7秒前
南宫古伦完成签到 ,获得积分10
7秒前
8秒前
斯文败类应助zjl900111采纳,获得10
8秒前
菠萝发布了新的文献求助10
8秒前
科目三应助bairimao采纳,获得10
8秒前
yizhi猫发布了新的文献求助10
9秒前
LI发布了新的文献求助10
9秒前
9秒前
在水一方应助光亮嵩采纳,获得30
9秒前
zyzhnu完成签到,获得积分10
10秒前
BING发布了新的文献求助10
10秒前
sos发布了新的文献求助10
10秒前
10秒前
嬛嬛完成签到,获得积分10
11秒前
Frankll发布了新的文献求助150
12秒前
呼呼发布了新的文献求助10
12秒前
12秒前
苹果笑寒发布了新的文献求助20
14秒前
栗子完成签到 ,获得积分10
14秒前
彭于晏应助热塑性哈士奇采纳,获得10
14秒前
momo发布了新的文献求助10
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3971091
求助须知:如何正确求助?哪些是违规求助? 3515797
关于积分的说明 11179488
捐赠科研通 3250872
什么是DOI,文献DOI怎么找? 1795536
邀请新用户注册赠送积分活动 875891
科研通“疑难数据库(出版商)”最低求助积分说明 805207