Deep Learning Models for Time-History Prediction of Vehicle-Induced Bridge Responses: A Comparative Study

计算机科学 桥(图论) 深度学习 人工神经网络 卷积神经网络 人工智能 前馈 循环神经网络 机器学习 控制工程 工程类 医学 内科学
作者
Huile Li,Tianyu Wang,Judy P. Yang,Gang Wu
出处
期刊:International Journal of Structural Stability and Dynamics [World Scientific]
卷期号:23 (01) 被引量:12
标识
DOI:10.1142/s0219455423500049
摘要

Time-history responses of the bridge induced by the moving vehicle provide crucial information for bridge design, operation, maintenance, etc. As inspired by this, this work attempts to provide a new paradigm for vehicle–bridge interaction (VBI) by highlighting the comparison of different deep learning algorithms applied to the prediction of time-history responses of the bridge under vehicular loads. Particularly, three deep learning architectures with few and measurable input features developed by using fully-connected feedforward neural network, long short-term memory (LSTM) network, and convolutional neural network (CNN) are proposed on the basis of the governing equation of bridge vibrations. Three VBI systems with various vehicle models are developed and further validated to produce reliable training data. To examine the accuracy of the predictive models, two advanced metrics are exploited for time-history estimate. Moreover, the proposed deep learning models are comprehensively investigated through a parametric study on the influential factors associated with the VBI system and network architecture. The results show that deep feedforward neural network (DFNN), LSTM network, and CNN can be applied in VBI analysis to estimate the bridge time-history response. The three neural networks have comparable prediction accuracies. When considering the irregularity excitation, CNN is found to be the most efficient predictive model, while DFNN needs the least training time under perfect bridge surface condition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助monicaaaa采纳,获得10
刚刚
iNk应助CCC采纳,获得20
刚刚
CHEN发布了新的文献求助10
刚刚
1秒前
2秒前
隐形曼青应助ssds采纳,获得10
2秒前
科研毛毛虫完成签到,获得积分10
2秒前
流光闪过的线完成签到 ,获得积分10
4秒前
顾槿发布了新的文献求助10
4秒前
噜噜噜噜噜完成签到,获得积分10
5秒前
5秒前
李二狗完成签到,获得积分10
5秒前
5秒前
6秒前
ddffgz发布了新的文献求助10
7秒前
doolp完成签到,获得积分10
7秒前
7秒前
7秒前
科研通AI2S应助Oneplusssss采纳,获得10
9秒前
科研微微完成签到,获得积分10
9秒前
10秒前
Nic完成签到,获得积分10
10秒前
kento发布了新的文献求助10
11秒前
Zz发布了新的文献求助10
11秒前
Ava完成签到,获得积分20
12秒前
xiazixiaojie完成签到,获得积分10
12秒前
零度发布了新的文献求助10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
华仔应助科研通管家采纳,获得10
13秒前
英姑应助科研通管家采纳,获得10
13秒前
13秒前
丘比特应助科研通管家采纳,获得10
14秒前
完美世界应助科研通管家采纳,获得10
14秒前
Hello应助科研通管家采纳,获得10
14秒前
FashionBoy应助科研通管家采纳,获得10
14秒前
所所应助科研通管家采纳,获得10
14秒前
敬老院N号应助科研通管家采纳,获得20
14秒前
顾槿完成签到,获得积分10
14秒前
在水一方应助维尼采纳,获得10
14秒前
15秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156020
求助须知:如何正确求助?哪些是违规求助? 2807409
关于积分的说明 7872961
捐赠科研通 2465760
什么是DOI,文献DOI怎么找? 1312375
科研通“疑难数据库(出版商)”最低求助积分说明 630083
版权声明 601905