Deep Learning Models for Time-History Prediction of Vehicle-Induced Bridge Responses: A Comparative Study

计算机科学 桥(图论) 深度学习 人工神经网络 卷积神经网络 人工智能 前馈 循环神经网络 机器学习 控制工程 工程类 医学 内科学
作者
Huile Li,Tianyu Wang,Judy P. Yang,Gang Wu
出处
期刊:International Journal of Structural Stability and Dynamics [World Scientific]
卷期号:23 (01) 被引量:16
标识
DOI:10.1142/s0219455423500049
摘要

Time-history responses of the bridge induced by the moving vehicle provide crucial information for bridge design, operation, maintenance, etc. As inspired by this, this work attempts to provide a new paradigm for vehicle–bridge interaction (VBI) by highlighting the comparison of different deep learning algorithms applied to the prediction of time-history responses of the bridge under vehicular loads. Particularly, three deep learning architectures with few and measurable input features developed by using fully-connected feedforward neural network, long short-term memory (LSTM) network, and convolutional neural network (CNN) are proposed on the basis of the governing equation of bridge vibrations. Three VBI systems with various vehicle models are developed and further validated to produce reliable training data. To examine the accuracy of the predictive models, two advanced metrics are exploited for time-history estimate. Moreover, the proposed deep learning models are comprehensively investigated through a parametric study on the influential factors associated with the VBI system and network architecture. The results show that deep feedforward neural network (DFNN), LSTM network, and CNN can be applied in VBI analysis to estimate the bridge time-history response. The three neural networks have comparable prediction accuracies. When considering the irregularity excitation, CNN is found to be the most efficient predictive model, while DFNN needs the least training time under perfect bridge surface condition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
通~发布了新的文献求助10
1秒前
lai完成签到,获得积分20
1秒前
1秒前
2秒前
2秒前
隐形曼青应助彭彭采纳,获得10
3秒前
卡卡完成签到 ,获得积分10
3秒前
科目三应助季夏采纳,获得10
4秒前
4秒前
今后应助激动的一手采纳,获得10
4秒前
许中原完成签到,获得积分10
4秒前
无限的幻灵完成签到,获得积分10
4秒前
5秒前
整齐路灯完成签到,获得积分10
5秒前
紧张的梦岚应助跳跃乘风采纳,获得20
5秒前
简单水杯完成签到 ,获得积分10
5秒前
大胆的尔岚完成签到,获得积分10
6秒前
6秒前
Sene完成签到,获得积分10
6秒前
哈哈大笑发布了新的文献求助10
6秒前
叶飞荷发布了新的文献求助10
7秒前
7秒前
竹筏过海应助嘎啦嘎嘎啦采纳,获得40
7秒前
7秒前
123456完成签到 ,获得积分10
8秒前
8秒前
9秒前
乐乐乐乐乐完成签到,获得积分10
9秒前
Q.curiosity完成签到,获得积分10
10秒前
丘比特应助我行我素采纳,获得10
10秒前
ClaudiaCY完成签到,获得积分10
10秒前
10秒前
科研天才完成签到,获得积分10
11秒前
GHOST发布了新的文献求助10
11秒前
11秒前
12秒前
谢家宝树发布了新的文献求助10
12秒前
HEIKU应助Ying采纳,获得10
13秒前
Zzz完成签到,获得积分10
13秒前
LC发布了新的文献求助20
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762