AFCS: Aggregation-Free Spatial-Temporal Mobile Community Sensing

计算机科学 杠杆(统计) 无线传感器网络 实时计算 空间分析 数据挖掘 移动宽带 数据流 压缩传感 遥感 计算机网络 无线 人工智能 电信 地质学
作者
Jiang Bian,Haoyi Xiong,Zhiyuan Wang,Jingbo Zhou,Shilei Ji,Hongyang Chen,Daqing Zhang,Dejing Dou
出处
期刊:IEEE Transactions on Mobile Computing [IEEE Computer Society]
卷期号:: 1-1
标识
DOI:10.1109/tmc.2022.3178885
摘要

While spatial-temporal environment monitoring has become an indispensable way to collect data for enabling smart cities and intelligent transportation applications, the cost to deploy, operate and maintain a sensor network with sensors and massive communication infrastructure is too high to bear. Compared to the infrastructure-based sensing approach, community sensing, or namely mobile crowdsensing, that leverage community members' mobile devices to collect data becomes a feasible way to scale up the spatial-temporal coverage of the sensing system. However, a community sensing system would need to aggregate sensors and location data from community members and thus would raise concerns on privacy and data security In this paper, we present a novel community sensing paradigm AFCS -Sensor and Location Data Aggregation-Free Community Sensing, which is designed to obtain the environment information (e.g., spatial-temporal distributions of air pollution, temperature, and bike-shares) in each subarea of the target area, without aggregating sensor and location data collected by community members. AFCS proposes to orchestrate with the Trusted Execution Environments (TEEs) of every community member's mobile device to cover the communication, computation and storage with spatial-temporal data. Further, AFCS proposes a novel Decentralized Spatial-Temporal Compressive Sensing framework based on Parallelized Stochastic Gradient Descent. Through learning the latent structure of the spatial-temporal data via decentralized optimization, AFCS approximates the value of the sensor data in each subarea (both covered and uncovered) for each sensing cycle using the sensor data locally stored in every member's TEE instance. Experiments based on real-world datasets and the Virtual Mobile Infrastructure (VMI) with TEE emulations demonstrate that AFCS exhibits low approximation error (i.e., less than 0:2°C in city-wide temperature sensing, 10 units of PM2.5 index in urban air pollution sensing, and 2 bikes in city-wide bike sharing prediction) and performs comparably to (sometimes better than) state-of-the-art algorithms based on the data aggregation and centralized computation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Gallagher发布了新的文献求助10
1秒前
浮游应助唯有一个心采纳,获得10
1秒前
poly完成签到 ,获得积分10
2秒前
林楚棋完成签到 ,获得积分10
2秒前
2秒前
画个饼充饥完成签到,获得积分10
2秒前
高高的坤发布了新的文献求助10
2秒前
太阳花完成签到,获得积分10
2秒前
bkagyin应助Aero采纳,获得10
3秒前
科研通AI6应助bhkwxdxy采纳,获得10
3秒前
动听的初蓝完成签到 ,获得积分10
3秒前
愉快寄真完成签到,获得积分10
4秒前
小布丁发布了新的文献求助10
4秒前
我不221发布了新的文献求助10
4秒前
浮游应助BRADp采纳,获得10
4秒前
自由可兰完成签到 ,获得积分10
4秒前
5秒前
陈楷发布了新的文献求助10
5秒前
甜甜友容完成签到,获得积分10
6秒前
王大哥发布了新的文献求助20
6秒前
drleslie完成签到 ,获得积分10
6秒前
adagio完成签到,获得积分10
7秒前
李白发布了新的文献求助10
7秒前
充电宝应助tiantian采纳,获得10
7秒前
所所应助雍晓啸采纳,获得10
8秒前
8秒前
谨慎的秋灵完成签到,获得积分10
9秒前
LiuZhaoYuan完成签到,获得积分10
10秒前
顺利的依风完成签到,获得积分10
10秒前
希望天下0贩的0应助Lily采纳,获得10
10秒前
夏侯初发布了新的文献求助10
10秒前
11秒前
111完成签到,获得积分10
11秒前
11秒前
三石完成签到 ,获得积分10
12秒前
13秒前
谨慎翎完成签到 ,获得积分10
13秒前
等待蚂蚁完成签到 ,获得积分10
13秒前
琂当归完成签到,获得积分10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4935909
求助须知:如何正确求助?哪些是违规求助? 4203582
关于积分的说明 13060246
捐赠科研通 3980919
什么是DOI,文献DOI怎么找? 2179848
邀请新用户注册赠送积分活动 1195794
关于科研通互助平台的介绍 1107678