AFCS: Aggregation-Free Spatial-Temporal Mobile Community Sensing

计算机科学 杠杆(统计) 无线传感器网络 实时计算 空间分析 数据挖掘 移动宽带 数据流 压缩传感 遥感 计算机网络 无线 人工智能 电信 地质学
作者
Jiang Bian,Haoyi Xiong,Zhiyuan Wang,Jingbo Zhou,Shilei Ji,Hongyang Chen,Daqing Zhang,Dejing Dou
出处
期刊:IEEE Transactions on Mobile Computing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmc.2022.3178885
摘要

While spatial-temporal environment monitoring has become an indispensable way to collect data for enabling smart cities and intelligent transportation applications, the cost to deploy, operate and maintain a sensor network with sensors and massive communication infrastructure is too high to bear. Compared to the infrastructure-based sensing approach, community sensing, or namely mobile crowdsensing, that leverage community members' mobile devices to collect data becomes a feasible way to scale up the spatial-temporal coverage of the sensing system. However, a community sensing system would need to aggregate sensors and location data from community members and thus would raise concerns on privacy and data security In this paper, we present a novel community sensing paradigm AFCS -Sensor and Location Data Aggregation-Free Community Sensing, which is designed to obtain the environment information (e.g., spatial-temporal distributions of air pollution, temperature, and bike-shares) in each subarea of the target area, without aggregating sensor and location data collected by community members. AFCS proposes to orchestrate with the Trusted Execution Environments (TEEs) of every community member's mobile device to cover the communication, computation and storage with spatial-temporal data. Further, AFCS proposes a novel Decentralized Spatial-Temporal Compressive Sensing framework based on Parallelized Stochastic Gradient Descent. Through learning the latent structure of the spatial-temporal data via decentralized optimization, AFCS approximates the value of the sensor data in each subarea (both covered and uncovered) for each sensing cycle using the sensor data locally stored in every member's TEE instance. Experiments based on real-world datasets and the Virtual Mobile Infrastructure (VMI) with TEE emulations demonstrate that AFCS exhibits low approximation error (i.e., less than 0:2°C in city-wide temperature sensing, 10 units of PM2.5 index in urban air pollution sensing, and 2 bikes in city-wide bike sharing prediction) and performs comparably to (sometimes better than) state-of-the-art algorithms based on the data aggregation and centralized computation

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助想躺平采纳,获得10
1秒前
搜集达人应助超帅孱采纳,获得10
1秒前
大树梨发布了新的文献求助10
1秒前
Jasper应助彩色的平露采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
Abner完成签到,获得积分10
2秒前
小蘑菇应助张三采纳,获得10
2秒前
3秒前
chang发布了新的文献求助10
3秒前
斯文败类应助Lorry采纳,获得10
4秒前
4秒前
zzz发布了新的文献求助10
4秒前
pinkham_chen完成签到,获得积分10
4秒前
5秒前
友好的绮彤完成签到 ,获得积分10
5秒前
kongzy发布了新的文献求助10
5秒前
7秒前
媛肖发布了新的文献求助20
7秒前
Xcj完成签到,获得积分10
7秒前
8秒前
Owen应助纳川采纳,获得10
9秒前
南晴完成签到 ,获得积分20
9秒前
脑洞疼应助Li采纳,获得10
9秒前
qbxiaojie发布了新的文献求助10
9秒前
10秒前
briefyark完成签到,获得积分10
10秒前
10秒前
柠檬不萌发布了新的文献求助20
11秒前
11秒前
Hello应助Jerry采纳,获得10
11秒前
faustss完成签到,获得积分10
11秒前
li发布了新的文献求助10
11秒前
11秒前
kongzy完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
科目三应助YBR采纳,获得10
13秒前
miumiuka完成签到,获得积分10
13秒前
momo123发布了新的文献求助10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728317
求助须知:如何正确求助?哪些是违规求助? 5312368
关于积分的说明 15313794
捐赠科研通 4875546
什么是DOI,文献DOI怎么找? 2618882
邀请新用户注册赠送积分活动 1568431
关于科研通互助平台的介绍 1525095