AFCS: Aggregation-Free Spatial-Temporal Mobile Community Sensing

计算机科学 杠杆(统计) 无线传感器网络 实时计算 空间分析 数据挖掘 移动宽带 数据流 压缩传感 遥感 计算机网络 无线 人工智能 电信 地质学
作者
Jiang Bian,Haoyi Xiong,Zhiyuan Wang,Jingbo Zhou,Shilei Ji,Hongyang Chen,Daqing Zhang,Dejing Dou
出处
期刊:IEEE Transactions on Mobile Computing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmc.2022.3178885
摘要

While spatial-temporal environment monitoring has become an indispensable way to collect data for enabling smart cities and intelligent transportation applications, the cost to deploy, operate and maintain a sensor network with sensors and massive communication infrastructure is too high to bear. Compared to the infrastructure-based sensing approach, community sensing, or namely mobile crowdsensing, that leverage community members' mobile devices to collect data becomes a feasible way to scale up the spatial-temporal coverage of the sensing system. However, a community sensing system would need to aggregate sensors and location data from community members and thus would raise concerns on privacy and data security In this paper, we present a novel community sensing paradigm AFCS -Sensor and Location Data Aggregation-Free Community Sensing, which is designed to obtain the environment information (e.g., spatial-temporal distributions of air pollution, temperature, and bike-shares) in each subarea of the target area, without aggregating sensor and location data collected by community members. AFCS proposes to orchestrate with the Trusted Execution Environments (TEEs) of every community member's mobile device to cover the communication, computation and storage with spatial-temporal data. Further, AFCS proposes a novel Decentralized Spatial-Temporal Compressive Sensing framework based on Parallelized Stochastic Gradient Descent. Through learning the latent structure of the spatial-temporal data via decentralized optimization, AFCS approximates the value of the sensor data in each subarea (both covered and uncovered) for each sensing cycle using the sensor data locally stored in every member's TEE instance. Experiments based on real-world datasets and the Virtual Mobile Infrastructure (VMI) with TEE emulations demonstrate that AFCS exhibits low approximation error (i.e., less than 0:2°C in city-wide temperature sensing, 10 units of PM2.5 index in urban air pollution sensing, and 2 bikes in city-wide bike sharing prediction) and performs comparably to (sometimes better than) state-of-the-art algorithms based on the data aggregation and centralized computation

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
曾经的雅琴完成签到,获得积分10
1秒前
圆子发布了新的文献求助10
1秒前
考博圣体发布了新的文献求助20
1秒前
fsyb完成签到,获得积分10
2秒前
Bob_Hello完成签到 ,获得积分10
2秒前
chenkai完成签到,获得积分10
2秒前
愉快的老三完成签到,获得积分10
2秒前
斯文败类应助喵喵采纳,获得10
2秒前
anru发布了新的文献求助10
3秒前
4秒前
mmm4发布了新的文献求助10
4秒前
5秒前
何海发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
6秒前
Fe2O3发布了新的文献求助30
7秒前
8秒前
9秒前
帕克完成签到,获得积分10
9秒前
科研通AI6应助何海采纳,获得10
9秒前
10秒前
10秒前
urologywang发布了新的文献求助10
10秒前
10秒前
11秒前
12秒前
LX发布了新的文献求助10
12秒前
等待凡英发布了新的文献求助10
13秒前
13秒前
michen发布了新的文献求助10
14秒前
ren关注了科研通微信公众号
14秒前
lay发布了新的文献求助10
15秒前
CodeCraft应助热心市民采纳,获得10
15秒前
Orange应助开放鹤轩采纳,获得30
15秒前
狗子棋发布了新的文献求助10
16秒前
16秒前
16秒前
赵睿老婆完成签到 ,获得积分10
16秒前
ziyuexu发布了新的文献求助10
17秒前
airvince发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675662
求助须知:如何正确求助?哪些是违规求助? 4948205
关于积分的说明 15154348
捐赠科研通 4834937
什么是DOI,文献DOI怎么找? 2589774
邀请新用户注册赠送积分活动 1543545
关于科研通互助平台的介绍 1501282