AFCS: Aggregation-Free Spatial-Temporal Mobile Community Sensing

计算机科学 杠杆(统计) 无线传感器网络 实时计算 空间分析 数据挖掘 移动宽带 数据流 压缩传感 遥感 计算机网络 无线 人工智能 电信 地质学
作者
Jiang Bian,Haoyi Xiong,Zhiyuan Wang,Jingbo Zhou,Shilei Ji,Hongyang Chen,Daqing Zhang,Dejing Dou
出处
期刊:IEEE Transactions on Mobile Computing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmc.2022.3178885
摘要

While spatial-temporal environment monitoring has become an indispensable way to collect data for enabling smart cities and intelligent transportation applications, the cost to deploy, operate and maintain a sensor network with sensors and massive communication infrastructure is too high to bear. Compared to the infrastructure-based sensing approach, community sensing, or namely mobile crowdsensing, that leverage community members' mobile devices to collect data becomes a feasible way to scale up the spatial-temporal coverage of the sensing system. However, a community sensing system would need to aggregate sensors and location data from community members and thus would raise concerns on privacy and data security In this paper, we present a novel community sensing paradigm AFCS -Sensor and Location Data Aggregation-Free Community Sensing, which is designed to obtain the environment information (e.g., spatial-temporal distributions of air pollution, temperature, and bike-shares) in each subarea of the target area, without aggregating sensor and location data collected by community members. AFCS proposes to orchestrate with the Trusted Execution Environments (TEEs) of every community member's mobile device to cover the communication, computation and storage with spatial-temporal data. Further, AFCS proposes a novel Decentralized Spatial-Temporal Compressive Sensing framework based on Parallelized Stochastic Gradient Descent. Through learning the latent structure of the spatial-temporal data via decentralized optimization, AFCS approximates the value of the sensor data in each subarea (both covered and uncovered) for each sensing cycle using the sensor data locally stored in every member's TEE instance. Experiments based on real-world datasets and the Virtual Mobile Infrastructure (VMI) with TEE emulations demonstrate that AFCS exhibits low approximation error (i.e., less than 0:2°C in city-wide temperature sensing, 10 units of PM2.5 index in urban air pollution sensing, and 2 bikes in city-wide bike sharing prediction) and performs comparably to (sometimes better than) state-of-the-art algorithms based on the data aggregation and centralized computation

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助哈哈哈哈采纳,获得10
1秒前
00gi完成签到,获得积分10
1秒前
oh发布了新的文献求助10
2秒前
3秒前
4秒前
5秒前
千寻发布了新的文献求助10
5秒前
文润宇发布了新的文献求助10
8秒前
小雪完成签到,获得积分10
8秒前
依灵完成签到,获得积分10
8秒前
10秒前
10秒前
10秒前
13秒前
GRJ发布了新的文献求助10
16秒前
恪心完成签到,获得积分10
17秒前
彭于晏应助千寻采纳,获得10
18秒前
脑洞疼应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得30
18秒前
传奇3应助科研通管家采纳,获得10
18秒前
只争朝夕应助科研通管家采纳,获得30
18秒前
共享精神应助科研通管家采纳,获得10
19秒前
19秒前
英俊的铭应助科研通管家采纳,获得10
19秒前
大模型应助科研通管家采纳,获得10
19秒前
CipherSage应助科研通管家采纳,获得10
19秒前
寻道图强应助科研通管家采纳,获得30
19秒前
传奇3应助科研通管家采纳,获得10
19秒前
李金玉发布了新的文献求助10
19秒前
深情安青应助科研通管家采纳,获得10
19秒前
只争朝夕应助科研通管家采纳,获得10
19秒前
充电宝应助科研通管家采纳,获得30
19秒前
李爱国应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
20秒前
21秒前
打打应助文润宇采纳,获得10
21秒前
21秒前
YFL完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563503
求助须知:如何正确求助?哪些是违规求助? 4648366
关于积分的说明 14684601
捐赠科研通 4590315
什么是DOI,文献DOI怎么找? 2518435
邀请新用户注册赠送积分活动 1491125
关于科研通互助平台的介绍 1462426