AFCS: Aggregation-Free Spatial-Temporal Mobile Community Sensing

计算机科学 杠杆(统计) 无线传感器网络 实时计算 空间分析 数据挖掘 移动宽带 数据流 压缩传感 遥感 计算机网络 无线 人工智能 电信 地质学
作者
Jiang Bian,Haoyi Xiong,Zhiyuan Wang,Jingbo Zhou,Shilei Ji,Hongyang Chen,Daqing Zhang,Dejing Dou
出处
期刊:IEEE Transactions on Mobile Computing [IEEE Computer Society]
卷期号:: 1-1
标识
DOI:10.1109/tmc.2022.3178885
摘要

While spatial-temporal environment monitoring has become an indispensable way to collect data for enabling smart cities and intelligent transportation applications, the cost to deploy, operate and maintain a sensor network with sensors and massive communication infrastructure is too high to bear. Compared to the infrastructure-based sensing approach, community sensing, or namely mobile crowdsensing, that leverage community members' mobile devices to collect data becomes a feasible way to scale up the spatial-temporal coverage of the sensing system. However, a community sensing system would need to aggregate sensors and location data from community members and thus would raise concerns on privacy and data security In this paper, we present a novel community sensing paradigm AFCS -Sensor and Location Data Aggregation-Free Community Sensing, which is designed to obtain the environment information (e.g., spatial-temporal distributions of air pollution, temperature, and bike-shares) in each subarea of the target area, without aggregating sensor and location data collected by community members. AFCS proposes to orchestrate with the Trusted Execution Environments (TEEs) of every community member's mobile device to cover the communication, computation and storage with spatial-temporal data. Further, AFCS proposes a novel Decentralized Spatial-Temporal Compressive Sensing framework based on Parallelized Stochastic Gradient Descent. Through learning the latent structure of the spatial-temporal data via decentralized optimization, AFCS approximates the value of the sensor data in each subarea (both covered and uncovered) for each sensing cycle using the sensor data locally stored in every member's TEE instance. Experiments based on real-world datasets and the Virtual Mobile Infrastructure (VMI) with TEE emulations demonstrate that AFCS exhibits low approximation error (i.e., less than 0:2°C in city-wide temperature sensing, 10 units of PM2.5 index in urban air pollution sensing, and 2 bikes in city-wide bike sharing prediction) and performs comparably to (sometimes better than) state-of-the-art algorithms based on the data aggregation and centralized computation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
洛神之心1124完成签到,获得积分10
1秒前
2秒前
2秒前
慧慧完成签到,获得积分10
2秒前
2秒前
JFy完成签到 ,获得积分10
3秒前
一只学术小猫咪完成签到,获得积分10
3秒前
ff发布了新的文献求助10
4秒前
深情安青应助felix采纳,获得10
4秒前
5秒前
123发布了新的文献求助10
5秒前
6秒前
liars发布了新的文献求助10
7秒前
一叶扁舟完成签到,获得积分10
7秒前
孔雪发布了新的文献求助10
8秒前
@小小搬砖瑞完成签到,获得积分10
8秒前
Aiden完成签到,获得积分10
9秒前
9秒前
11秒前
洺全发布了新的文献求助10
12秒前
陳LF完成签到,获得积分10
12秒前
白也完成签到 ,获得积分10
12秒前
超爱蛋炒饭完成签到,获得积分10
12秒前
哈哈发布了新的文献求助10
12秒前
12秒前
13秒前
舒适怀寒完成签到 ,获得积分10
14秒前
14秒前
贪玩的芸发布了新的文献求助30
15秒前
15秒前
123完成签到,获得积分10
16秒前
16秒前
研友_LN7x6n发布了新的文献求助10
17秒前
wocao完成签到 ,获得积分10
17秒前
苏曼青完成签到,获得积分10
17秒前
Jade张完成签到,获得积分10
18秒前
bake完成签到,获得积分10
18秒前
yibo发布了新的文献求助10
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954557
求助须知:如何正确求助?哪些是违规求助? 3500718
关于积分的说明 11100747
捐赠科研通 3231204
什么是DOI,文献DOI怎么找? 1786337
邀请新用户注册赠送积分活动 869958
科研通“疑难数据库(出版商)”最低求助积分说明 801737