Surrogate Sample-Assisted Particle Swarm Optimization for Feature Selection on High-Dimensional Data

粒子群优化 特征选择 特征(语言学) 计算机科学 替代模型 选择(遗传算法) 人工智能 进化计算 多群优化 数学优化 模式识别(心理学) 样品(材料) 元启发式 高维 算法 数学 机器学习 物理 哲学 热力学 语言学
作者
Xianfang Song,Zhang Yon,Dunwei Gong,Hui Liu,Wanqiu Zhang
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:27 (3): 595-609 被引量:60
标识
DOI:10.1109/tevc.2022.3175226
摘要

With the increase of the number of features and the sample size, existing feature selection (FS) methods based on evolutionary optimization still face challenges such as the "curse of dimensionality" and the high computational cost. In view of this, dividing or clustering the sample and feature spaces at the same time, this article proposes a hybrid FS algorithm using surrogate sample-assisted particle swarm optimization (SS-PSO). First, a nonrepetitive uniform sampling strategy is employed to divide the whole sample set into several small-size sample subsets. Regarding each sample subset as a surrogate unit, next, a collaborative feature clustering mechanism is proposed to divide the feature space, with the purpose of reducing both the computational cost of clustering feature and the search space of PSO. Following that, an ensemble surrogate-assisted integer PSO is proposed. To ensure the prediction accuracy of ensemble surrogate when evaluating particles, an ensemble surrogate construction and management strategy is designed. Since the whole sample set is replaced by a small number of surrogate units, SS-PSO significantly reduces the cost of evaluating particles in PSO. Finally, the proposed algorithm is applied to some typical datasets, and compared with six typical evolutionary FS algorithms, as well as its several variant algorithms. The experimental results show that SS-PSO can obtain good feature subsets at the smallest computational cost on most of datasets. All verify that SS-PSO is a highly competitive method for high-dimensional FS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JohnsonTse完成签到,获得积分10
刚刚
1秒前
1秒前
dream发布了新的文献求助30
2秒前
feiying88发布了新的文献求助10
3秒前
4秒前
wert完成签到,获得积分10
5秒前
赘婿应助路口采纳,获得10
5秒前
6秒前
星辰大海应助自信的紫青采纳,获得10
6秒前
7秒前
9秒前
9秒前
无算浮白发布了新的文献求助10
11秒前
晖晖shining完成签到 ,获得积分10
11秒前
gszyxyrxj发布了新的文献求助10
11秒前
安然完成签到,获得积分10
12秒前
两酒窝发布了新的文献求助10
12秒前
12秒前
生动路人应助January采纳,获得10
13秒前
ssss完成签到,获得积分10
13秒前
feiying88完成签到,获得积分10
13秒前
13秒前
14秒前
陶醉访风发布了新的文献求助30
14秒前
110o发布了新的文献求助10
14秒前
zhao发布了新的文献求助10
15秒前
16秒前
大笨蛋发布了新的文献求助10
16秒前
16秒前
桐桐应助1111采纳,获得10
16秒前
16秒前
999999发布了新的文献求助10
17秒前
甜滋滋发布了新的文献求助10
17秒前
18秒前
zihanwang应助旋转鸡爪子采纳,获得10
18秒前
彪行天下发布了新的文献求助10
20秒前
21秒前
21秒前
忐忑的小玉完成签到,获得积分10
22秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998724
求助须知:如何正确求助?哪些是违规求助? 3538169
关于积分的说明 11273611
捐赠科研通 3277151
什么是DOI,文献DOI怎么找? 1807423
邀请新用户注册赠送积分活动 883867
科研通“疑难数据库(出版商)”最低求助积分说明 810070