Surrogate Sample-Assisted Particle Swarm Optimization for Feature Selection on High-Dimensional Data

粒子群优化 维数之咒 聚类分析 特征选择 特征(语言学) 计算机科学 替代模型 样本量测定 特征向量 人工智能 数学优化 进化算法 模式识别(心理学) 样品(材料) 算法 数学 统计 语言学 哲学 化学 色谱法
作者
Xianfang Song,Zhang Yon,Dunwei Gong,Hui Liu,Wanqiu Zhang
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:27 (3): 595-609 被引量:39
标识
DOI:10.1109/tevc.2022.3175226
摘要

With the increase of the number of features and the sample size, existing feature selection (FS) methods based on evolutionary optimization still face challenges such as the “curse of dimensionality” and the high computational cost. In view of this, dividing or clustering the sample and feature spaces at the same time, this article proposes a hybrid FS algorithm using surrogate sample-assisted particle swarm optimization (SS-PSO). First, a nonrepetitive uniform sampling strategy is employed to divide the whole sample set into several small-size sample subsets. Regarding each sample subset as a surrogate unit, next, a collaborative feature clustering mechanism is proposed to divide the feature space, with the purpose of reducing both the computational cost of clustering feature and the search space of PSO. Following that, an ensemble surrogate-assisted integer PSO is proposed. To ensure the prediction accuracy of ensemble surrogate when evaluating particles, an ensemble surrogate construction and management strategy is designed. Since the whole sample set is replaced by a small number of surrogate units, SS-PSO significantly reduces the cost of evaluating particles in PSO. Finally, the proposed algorithm is applied to some typical datasets, and compared with six typical evolutionary FS algorithms, as well as its several variant algorithms. The experimental results show that SS-PSO can obtain good feature subsets at the smallest computational cost on most of datasets. All verify that SS-PSO is a highly competitive method for high-dimensional FS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1874发布了新的文献求助10
刚刚
东方三问发布了新的文献求助10
刚刚
科研通AI2S应助liu采纳,获得10
刚刚
1秒前
zeb完成签到,获得积分10
3秒前
realer发布了新的文献求助10
4秒前
chen应助wei采纳,获得10
4秒前
南海牧鲸人完成签到,获得积分10
5秒前
汉堡包应助雪白凌晴采纳,获得10
5秒前
5秒前
丢丢发布了新的文献求助10
5秒前
robotJ完成签到,获得积分10
5秒前
9秒前
树池完成签到,获得积分10
10秒前
11秒前
洁净的老寿星完成签到,获得积分10
12秒前
超帅的薯片完成签到,获得积分10
12秒前
1874完成签到,获得积分10
13秒前
自然白亦完成签到,获得积分10
13秒前
14秒前
Rooory完成签到,获得积分10
15秒前
悦耳的谷芹完成签到,获得积分10
15秒前
gliterr发布了新的文献求助10
17秒前
19秒前
20秒前
realer完成签到,获得积分10
21秒前
NexusExplorer应助mendy采纳,获得10
22秒前
搜集达人应助丢丢采纳,获得10
23秒前
24秒前
maomao完成签到,获得积分20
25秒前
Orange应助chancewong采纳,获得10
26秒前
深情安青应助阿乾采纳,获得10
26秒前
标致白卉完成签到,获得积分10
28秒前
Yangzx发布了新的文献求助10
28秒前
爆米花应助您_采纳,获得10
29秒前
30秒前
sasa完成签到,获得积分10
31秒前
32秒前
麦麦发布了新的文献求助10
33秒前
李心雨发布了新的文献求助10
33秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
New China Forges Ahead: Important Documents of the Third Session of the First National Committee of the Chinese People's Political Consultative Conference 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3056175
求助须知:如何正确求助?哪些是违规求助? 2712737
关于积分的说明 7432964
捐赠科研通 2357715
什么是DOI,文献DOI怎么找? 1249040
科研通“疑难数据库(出版商)”最低求助积分说明 606843
版权声明 596195