CDFRegNet: A cross-domain fusion registration network for CT-to-CBCT image registration

人工智能 计算机科学 图像配准 计算机视觉 保险丝(电气) 图像融合 领域(数学分析) 锥束ct GSM演进的增强数据速率 图像(数学) 计算机断层摄影术 医学 数学 放射科 数学分析 工程类 电气工程
作者
Yuzhu Cao,Tianxiao Fu,Luwen Duan,Yakang Dai,Lun Gong,Wenwu Cao,Desen Liu,Xiaodong Yang,Xinye Ni,Jian Zheng
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:224: 107025-107025 被引量:10
标识
DOI:10.1016/j.cmpb.2022.107025
摘要

Computer tomography (CT) to cone-beam computed tomography (CBCT) image registration plays an important role in radiotherapy treatment placement, dose verification, and anatomic changes monitoring during radiotherapy. However, fast and accurate CT-to-CBCT image registration is still very challenging due to the intensity differences, the poor image quality of CBCT images, and inconsistent structure information.To address these problems, a novel unsupervised network named cross-domain fusion registration network (CDFRegNet) is proposed. First, a novel edge-guided attention module (EGAM) is designed, aiming at capturing edge information based on the gradient prior images and guiding the network to model the spatial correspondence between two image domains. Moreover, a novel cross-domain attention module (CDAM) is proposed to improve the network's ability to guide the network to effectively map and fuse the domain-specific features.Extensive experiments on a real clinical dataset were carried out, and the experimental results verify that the proposed CDFRegNet can register CT to CBCT images effectively and obtain the best performance, while compared with other representative methods, with a mean DSC of 80.01±7.16%, a mean TRE of 2.27±0.62 mm, and a mean MHD of 1.50±0.32 mm. The ablation experiments also proved that our EGAM and CDAM can further improve the accuracy of the registration network and they can generalize well to other registration networks.This paper proposed a novel CT-to-CBCT registration method based on EGAM and CDAM, which has the potential to improve the accuracy of multi-domain image registration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小黄人完成签到,获得积分10
2秒前
2秒前
3秒前
科研通AI2S应助加油采纳,获得10
3秒前
天真的万声完成签到,获得积分10
4秒前
陶火桃发布了新的文献求助10
5秒前
英俊的铭应助喜欢采纳,获得10
5秒前
6秒前
InfoNinja应助垂青采纳,获得30
6秒前
慕青应助高挑的若雁采纳,获得10
6秒前
8秒前
整齐凌萱发布了新的文献求助10
9秒前
9秒前
年轻的凤完成签到,获得积分10
11秒前
冬菇头发布了新的文献求助10
12秒前
13秒前
良辰应助清脆的白开水采纳,获得10
13秒前
13秒前
孙永胜发布了新的文献求助10
14秒前
学习人完成签到,获得积分20
16秒前
刘松发布了新的文献求助10
17秒前
17秒前
木木完成签到 ,获得积分10
18秒前
happyrrc发布了新的文献求助10
18秒前
烟花应助ztt采纳,获得10
20秒前
物语完成签到 ,获得积分10
20秒前
孙永胜完成签到,获得积分10
21秒前
烟花应助1234采纳,获得10
21秒前
孔大漂亮完成签到,获得积分10
21秒前
22秒前
Bake完成签到,获得积分10
22秒前
24秒前
26秒前
26秒前
大萱完成签到 ,获得积分10
28秒前
稳重的一曲完成签到,获得积分10
28秒前
踏实天空应助舒心的南珍采纳,获得10
28秒前
在水一方应助加油采纳,获得10
31秒前
公孙朝雨发布了新的文献求助10
31秒前
geold完成签到,获得积分10
32秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138888
求助须知:如何正确求助?哪些是违规求助? 2789815
关于积分的说明 7792820
捐赠科研通 2446185
什么是DOI,文献DOI怎么找? 1300930
科研通“疑难数据库(出版商)”最低求助积分说明 626066
版权声明 601079