Peripheral blood DNA methylation profiles predict future development of B-cell Non-Hodgkin Lymphoma

DNA甲基化 表观遗传学 肿瘤科 淋巴瘤 前瞻性队列研究 医学 内科学 甲基化 免疫学
作者
Almudena Espín-Pérez,Kevin Brennan,Asiri Ediriwickrema,Olivier Gevaert,Izidore S. Lossos,A.J. Gentles
出处
期刊:npj precision oncology [Springer Nature]
卷期号:6 (1)
标识
DOI:10.1038/s41698-022-00295-3
摘要

Abstract Lack of accurate methods for early lymphoma detection limits the ability to cure patients. Since patients with Non-Hodgkin lymphomas (NHL) who present with advanced disease have worse outcomes, accurate and sensitive methods for early detection are needed to improve patient care. We developed a DNA methylation-based prediction tool for NHL, based on blood samples collected prospectively from 278 apparently healthy patients who were followed for up to 16 years to monitor for NHL development. A predictive score was developed using machine learning methods in a robust training/validation framework. Our predictive score incorporates CpG DNA methylation at 135 genomic positions, with higher scores predicting higher risk. It was 85% and 78% accurate for identifying patients at risk of developing future NHL, in patients with high or low epigenetic mitotic clock respectively, in a validation cohort. It was also sensitive at detecting active NHL (96.3% accuracy) and healthy status (95.6% accuracy) in additional independent cohorts. Scores optimized for specific NHL subtypes showed significant but lower accuracy for predicting other subtypes. Our score incorporates hyper-methylation of Polycomb and HOX genes, which have roles in NHL development, as well as PAX5 - a master transcriptional regulator of B-cell fate. Subjects with higher risk scores showed higher regulatory T-cells, memory B-cells, but lower naïve T helper lymphocytes fractions in the blood. Future prospective studies will be required to confirm the utility of our signature for managing patients who are at high risk for developing future NHL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助zhaoqiang采纳,获得10
2秒前
田様应助小鱼鱼采纳,获得10
3秒前
sissiarno应助科研通管家采纳,获得30
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
852应助科研通管家采纳,获得10
4秒前
8R60d8应助科研通管家采纳,获得10
4秒前
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
FashionBoy应助科研通管家采纳,获得30
4秒前
大模型应助科研通管家采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
双黄应助科研通管家采纳,获得10
5秒前
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
8R60d8应助科研通管家采纳,获得10
5秒前
5秒前
科研狂人发布了新的文献求助10
6秒前
拓跋涵易发布了新的文献求助10
6秒前
sallltyyy完成签到,获得积分10
7秒前
等待的鞯发布了新的文献求助10
8秒前
9秒前
苞米公主发布了新的文献求助10
9秒前
shenshi完成签到,获得积分10
10秒前
11秒前
噜啦啦完成签到 ,获得积分10
14秒前
16秒前
shenshi发布了新的文献求助10
16秒前
所所应助小白想发好文章采纳,获得10
17秒前
chensiying完成签到 ,获得积分10
19秒前
21秒前
情怀应助kjding采纳,获得10
21秒前
李健应助漂亮的如容采纳,获得10
22秒前
22秒前
22秒前
Akim应助jiujiuhuang采纳,获得30
23秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314062
求助须知:如何正确求助?哪些是违规求助? 2946490
关于积分的说明 8530274
捐赠科研通 2622160
什么是DOI,文献DOI怎么找? 1434341
科研通“疑难数据库(出版商)”最低求助积分说明 665242
邀请新用户注册赠送积分活动 650804