An encoder-decoder network for direct image reconstruction on sinograms of a long axial field of view PET

人工智能 深度学习 均方误差 计算机科学 迭代重建 水准点(测量) 核医学 图像质量 相似性(几何) 卷积神经网络 模式识别(心理学) 正电子发射断层摄影术 重建算法 计算机视觉 数学 医学 图像(数学) 统计 地理 大地测量学
作者
Ruiyao Ma,Jiaxi Hu,Hasan Sari,Shengjun Xue,Clemens Mingels,Marco Viscione,Venkata Sai Sundar Kandarpa,Wei Bo Li,Dimitris Visvikis,Rui Qiu,Axel Rominger,Junli Li,Kuangyu Shi
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Nature]
卷期号:49 (13): 4464-4477 被引量:11
标识
DOI:10.1007/s00259-022-05861-2
摘要

Deep learning is an emerging reconstruction method for positron emission tomography (PET), which can tackle complex PET corrections in an integrated procedure. This paper optimizes the direct PET reconstruction from sinogram on a long axial field of view (LAFOV) PET. This paper proposes a novel deep learning architecture to reduce the biases during direct reconstruction from sinograms to images. This architecture is based on an encoder-decoder network, where the perceptual loss is used with pre-trained convolutional layers. It is trained and tested on data of 80 patients acquired from recent Siemens Biograph Vision Quadra long axial FOV (LAFOV) PET/CT. The patients are randomly split into a training dataset of 60 patients, a validation dataset of 10 patients, and a test dataset of 10 patients. The 3D sinograms are converted into 2D sinogram slices and used as input to the network. In addition, the vendor reconstructed images are considered as ground truths. Finally, the proposed method is compared with DeepPET, a benchmark deep learning method for PET reconstruction. Compared with DeepPET, the proposed network significantly reduces the root-mean-squared error (NRMSE) from 0.63 to 0.6 (p < 0.01) and increases the structural similarity index (SSIM) and peak signal-to-noise ratio (PSNR) from 0.93 to 0.95 (p < 0.01) and from 82.02 to 82.36 (p < 0.01), respectively. The reconstruction time is approximately 10 s per patient, which is shortened by 23 times compared with the conventional method. The errors of mean standardized uptake values (SUVmean) for lesions between ground truth and the predicted result are reduced from 33.5 to 18.7% (p = 0.03). In addition, the error of max SUV is reduced from 32.7 to 21.8% (p = 0.02). The results demonstrate the feasibility of using deep learning to reconstruct images with acceptable image quality and short reconstruction time. It is shown that the proposed method can improve the quality of deep learning-based reconstructed images without additional CT images for attenuation and scattering corrections. This study demonstrated the feasibility of deep learning to rapidly reconstruct images without additional CT images for complex corrections from actual clinical measurements on LAFOV PET. Despite improving the current development, AI-based reconstruction does not work appropriately for untrained scenarios due to limited extrapolation capability and cannot completely replace conventional reconstruction currently.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助ramu采纳,获得10
1秒前
3秒前
小二郎应助清脆的白晴采纳,获得10
3秒前
顺利煎蛋应助酷酷半芹采纳,获得10
3秒前
xu发布了新的文献求助10
4秒前
谷安发布了新的文献求助10
5秒前
5秒前
5秒前
Lucas应助小豪娃采纳,获得10
5秒前
Mircale完成签到,获得积分20
5秒前
传奇3应助DNAdamage采纳,获得10
7秒前
研友_VZG7GZ应助之遥采纳,获得10
7秒前
平常的可乐完成签到 ,获得积分10
7秒前
Mircale发布了新的文献求助10
8秒前
gaolengtu完成签到 ,获得积分10
9秒前
lw完成签到,获得积分20
9秒前
qorchard完成签到,获得积分10
10秒前
Niki发布了新的文献求助20
11秒前
11秒前
与落发布了新的文献求助10
11秒前
J卡卡K完成签到 ,获得积分10
12秒前
Sun_Chen完成签到,获得积分10
13秒前
14秒前
flyfish完成签到,获得积分10
15秒前
15秒前
17秒前
与落完成签到,获得积分10
19秒前
kenna123发布了新的文献求助10
19秒前
zou发布了新的文献求助10
19秒前
ShengQ完成签到,获得积分10
21秒前
limbo完成签到 ,获得积分10
22秒前
23秒前
24秒前
24秒前
秋风细细雨完成签到 ,获得积分10
25秒前
kkkla发布了新的文献求助10
27秒前
27秒前
28秒前
32秒前
35秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164075
求助须知:如何正确求助?哪些是违规求助? 2814831
关于积分的说明 7906671
捐赠科研通 2474391
什么是DOI,文献DOI怎么找? 1317493
科研通“疑难数据库(出版商)”最低求助积分说明 631797
版权声明 602198