Machine learning in the identification, prediction and exploration of environmental toxicology: Challenges and perspectives

可解释性 环境毒理学 鉴定(生物学) 计算机科学 不良结局途径 数据科学 机器学习 环境监测 环境污染 风险分析(工程) 计算生物学 生物 医学 环境科学 生态学 毒性 内科学 环境保护
作者
Xiaotong Wu,Qixing Zhou,Mu Li,Xiangang Hu
出处
期刊:Journal of Hazardous Materials [Elsevier]
卷期号:438: 129487-129487 被引量:30
标识
DOI:10.1016/j.jhazmat.2022.129487
摘要

Over the past few decades, data-driven machine learning (ML) has distinguished itself from hypothesis-driven studies and has recently received much attention in environmental toxicology. However, the use of ML in environmental toxicology remains in the early stages, with knowledge gaps, technical bottlenecks in data quality, high-dimensional/heterogeneous/small-sample data analysis and model interpretability, and a lack of an in-depth understanding of environmental toxicology. Given the above problems, we review the recent progress in the literature and highlight state-of-the-art toxicological studies using ML (such as learning and predicting toxicity in complicated biosystems and multiple-factor environmental scenarios of long-term and large-scale pollution). Beyond predicting simple biological endpoints by integrating untargeted omics and adverse outcome pathways, ML development should focus on revealing toxicological mechanisms. The integration of data-driven ML with other methods (e.g., omics analysis and adverse outcome pathway frameworks) endows ML with widely promising application in revealing toxicological mechanisms. High-quality databases and interpretable algorithms are urgently needed for toxicology and environmental science. Addressing the core issues and future challenges for ML in this review may narrow the knowledge gap between environmental toxicity and computational science and facilitate the control of environmental risk in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
横A完成签到,获得积分10
刚刚
你好啊发布了新的文献求助10
刚刚
Owen应助lion_wei采纳,获得10
1秒前
3秒前
CipherSage应助SoniaChan采纳,获得10
4秒前
Hoooo...发布了新的文献求助10
4秒前
zzz完成签到,获得积分10
4秒前
顾矜应助jo采纳,获得10
5秒前
飞兰发布了新的文献求助10
6秒前
Hello应助你好啊采纳,获得10
7秒前
哈哈发布了新的文献求助10
7秒前
7秒前
wuliumu完成签到,获得积分10
9秒前
聪明大米完成签到 ,获得积分10
10秒前
Avicii完成签到 ,获得积分10
11秒前
CodeCraft应助yoru16采纳,获得10
11秒前
阳佟半仙完成签到,获得积分10
11秒前
lcc完成签到,获得积分10
12秒前
13秒前
雷雷完成签到,获得积分10
14秒前
务实青筠完成签到 ,获得积分10
14秒前
一只小陈陈完成签到,获得积分10
16秒前
16秒前
lcc发布了新的文献求助10
17秒前
hanzhang完成签到,获得积分10
17秒前
无语的从云完成签到,获得积分10
18秒前
18秒前
哈哈完成签到,获得积分10
18秒前
19秒前
20秒前
LUCKY完成签到,获得积分10
20秒前
乐山乐水完成签到,获得积分10
21秒前
22秒前
脑洞疼应助科研通管家采纳,获得30
23秒前
23秒前
Raylihuang应助科研通管家采纳,获得20
24秒前
FashionBoy应助科研通管家采纳,获得10
24秒前
咖啡豆应助科研通管家采纳,获得10
24秒前
bkagyin应助科研通管家采纳,获得10
24秒前
汉堡包应助科研通管家采纳,获得10
24秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139963
求助须知:如何正确求助?哪些是违规求助? 2790878
关于积分的说明 7796853
捐赠科研通 2447242
什么是DOI,文献DOI怎么找? 1301754
科研通“疑难数据库(出版商)”最低求助积分说明 626336
版权声明 601194