PFLF: Privacy-Preserving Federated Learning Framework for Edge Computing

计算机科学 边缘计算 信息隐私 GSM演进的增强数据速率 隐私保护 理论计算机科学 计算机安全 人工智能
作者
Hao Zhou,Geng Yang,Hua Dai,Guoxiu Liu
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:17: 1905-1918 被引量:46
标识
DOI:10.1109/tifs.2022.3174394
摘要

Federated learning (FL) can protect clients' privacy from leakage in distributed machine learning. Applying federated learning to edge computing can protect the privacy of edge clients and benefit edge computing. Nevertheless, eavesdroppers can analyze the parameter information to specify clients' private information and model features. And it is difficult to achieve a high privacy level, convergence, and low communication overhead during the entire process in the FL framework. In this paper, we propose a novel privacy-preserving federated learning framework for edge computing (PFLF). In PFLF, each client and the application server add noise before sending the data. To protect the privacy of clients, we design a flexible arrangement mechanism to count the optimal training times for clients. We prove that PFLF guarantees the privacy of clients and servers during the entire training process. Then, we theoretically prove that PFLF has three main properties: 1) For a given privacy level and model aggregation times, there is an optimal number of participating times for clients; 2) There is an upper and lower bound of convergence; 3) PFLF achieves low communication overhead by designing a flexible participation training mechanism. Simulation experiments confirm the correctness of our theoretical analysis. Therefore, PFLF helps design a framework to balance privacy levels and convergence and achieve low communication overhead when there is a part of clients dropping out of training.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助paul采纳,获得10
2秒前
4秒前
英姑应助书生采纳,获得10
5秒前
科研钓鱼佬完成签到,获得积分10
6秒前
8秒前
petrichor应助C_Cppp采纳,获得10
8秒前
nan完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
勤恳的雨文完成签到,获得积分10
9秒前
木森ab发布了新的文献求助10
10秒前
paul完成签到,获得积分10
10秒前
小鞋完成签到,获得积分10
11秒前
开心青旋发布了新的文献求助10
11秒前
fztnh发布了新的文献求助10
11秒前
无名花生完成签到 ,获得积分10
11秒前
13秒前
14秒前
14秒前
杜若完成签到,获得积分10
14秒前
14秒前
木森ab完成签到,获得积分20
16秒前
paul发布了新的文献求助10
17秒前
18秒前
MEME发布了新的文献求助10
21秒前
21秒前
情怀应助LSH970829采纳,获得10
21秒前
CHINA_C13发布了新的文献求助10
24秒前
Mars发布了新的文献求助10
25秒前
哈哈哈完成签到,获得积分10
25秒前
玛卡巴卡应助平常的毛豆采纳,获得100
26秒前
默默的青旋完成签到,获得积分10
27秒前
30秒前
搜集达人应助淡淡采白采纳,获得10
30秒前
高高代珊完成签到 ,获得积分10
31秒前
gmc发布了新的文献求助10
32秒前
32秒前
33秒前
善学以致用应助Mian采纳,获得10
33秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824