PFLF: Privacy-Preserving Federated Learning Framework for Edge Computing

计算机科学 边缘计算 信息隐私 GSM演进的增强数据速率 隐私保护 理论计算机科学 计算机安全 人工智能
作者
Hao Zhou,Geng Yang,Hua Dai,Guoxiu Liu
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:17: 1905-1918 被引量:62
标识
DOI:10.1109/tifs.2022.3174394
摘要

Federated learning (FL) can protect clients' privacy from leakage in distributed machine learning. Applying federated learning to edge computing can protect the privacy of edge clients and benefit edge computing. Nevertheless, eavesdroppers can analyze the parameter information to specify clients' private information and model features. And it is difficult to achieve a high privacy level, convergence, and low communication overhead during the entire process in the FL framework. In this paper, we propose a novel privacy-preserving federated learning framework for edge computing (PFLF). In PFLF, each client and the application server add noise before sending the data. To protect the privacy of clients, we design a flexible arrangement mechanism to count the optimal training times for clients. We prove that PFLF guarantees the privacy of clients and servers during the entire training process. Then, we theoretically prove that PFLF has three main properties: 1) For a given privacy level and model aggregation times, there is an optimal number of participating times for clients; 2) There is an upper and lower bound of convergence; 3) PFLF achieves low communication overhead by designing a flexible participation training mechanism. Simulation experiments confirm the correctness of our theoretical analysis. Therefore, PFLF helps design a framework to balance privacy levels and convergence and achieve low communication overhead when there is a part of clients dropping out of training.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hey发布了新的文献求助10
刚刚
1秒前
bubble嘞完成签到 ,获得积分10
1秒前
dew应助Joker采纳,获得10
2秒前
Hilda007应助captainHc采纳,获得10
2秒前
大个应助曲奇采纳,获得10
2秒前
兴奋的飞薇完成签到,获得积分20
2秒前
3秒前
星辰大海应助WeiBao采纳,获得30
3秒前
SHI发布了新的文献求助10
3秒前
浮游应助科研通管家采纳,获得10
4秒前
田様应助科研通管家采纳,获得10
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
orixero应助院士候选人之一采纳,获得10
4秒前
所所应助科研通管家采纳,获得10
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
杜萌萌发布了新的文献求助10
4秒前
可靠的枝完成签到,获得积分10
4秒前
天天快乐应助科研通管家采纳,获得100
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
Akim应助科研通管家采纳,获得10
4秒前
pyt发布了新的文献求助10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
斯文败类应助科研通管家采纳,获得10
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
yungm完成签到,获得积分10
7秒前
可爱的函函应助Hey采纳,获得10
7秒前
情怀应助YYT采纳,获得10
7秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5024658
求助须知:如何正确求助?哪些是违规求助? 4261640
关于积分的说明 13282520
捐赠科研通 4068751
什么是DOI,文献DOI怎么找? 2225424
邀请新用户注册赠送积分活动 1234165
关于科研通互助平台的介绍 1158139