Dynamic Auto-Structuring Graph Neural Network: A Joint Learning Framework for Origin-Destination Demand Prediction

计算机科学 图形 结构化 人工智能 数据挖掘 机器学习 理论计算机科学 财务 经济
作者
Dapeng Zhang,Feng Xiao
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:35 (4): 3699-3711 被引量:9
标识
DOI:10.1109/tkde.2021.3135898
摘要

Solving the demand prediction problem is an important part of improving the efficiency and reliability of ride-hailing services. Spatial-temporal graph learning methods have shown potential in modeling the spatial-temporal dependencies of ride-hailing demand data, but most existing studies focus on region-level demand prediction with only a few researchers addressing the problem of origin-destination (OD) demand prediction. In addition, previous spatial-temporal graph learning methods employ pre-defined and rigid graph structures that do not reveal the instinct and dynamic dependencies of ride-hailing demand data. In this paper, we propose a joint learning framework called Dynamic Auto-structuring Graph Neural Network (DAGNN) to address the origin-destination demand prediction problem. We develop a Dynamic Graph Decomposition and Recombination layer (DGDR) to handle both the graph structure and the graph representation learning problems simultaneously, with graph representations learned from a group of trainable and time-aware edge-induced subgraphs. Experimental results show that our proposed model outperforms ten baseline models with two real-world ride-hailing demand datasets and is efficient in structural pattern discovery. Comparing with existing methods, the significant advantage of the proposed method is that it circumvents the difficulties in defining the underlying graph structure of the researched data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助ljx采纳,获得10
2秒前
4秒前
4秒前
长乐完成签到,获得积分10
5秒前
牛牛眉目发布了新的文献求助10
5秒前
大熊完成签到 ,获得积分10
7秒前
8秒前
zk200107发布了新的文献求助10
8秒前
逝月完成签到,获得积分10
11秒前
田様应助杜兰特采纳,获得10
11秒前
11秒前
单身的钧完成签到,获得积分10
13秒前
竹筏过海应助执着的绿柏采纳,获得30
13秒前
jyy应助调皮的浩天采纳,获得10
14秒前
jyy应助调皮的浩天采纳,获得10
14秒前
15秒前
15秒前
15秒前
ljx发布了新的文献求助10
15秒前
CipherSage应助DAZIDAZI02采纳,获得10
17秒前
bibabiu发布了新的文献求助10
19秒前
下课了吧完成签到 ,获得积分10
20秒前
634301059完成签到 ,获得积分10
20秒前
666完成签到,获得积分10
20秒前
20秒前
21秒前
22秒前
shencan完成签到,获得积分10
22秒前
望北楼主发布了新的文献求助10
24秒前
李爱国应助Kiling采纳,获得10
25秒前
666应助nn采纳,获得10
26秒前
牛牛眉目发布了新的文献求助10
26秒前
Fiona完成签到 ,获得积分10
30秒前
迟梨完成签到,获得积分10
30秒前
Orange应助feihu采纳,获得10
32秒前
33秒前
35秒前
善学以致用应助JUNJIU采纳,获得20
36秒前
38秒前
38秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966344
求助须知:如何正确求助?哪些是违规求助? 3511753
关于积分的说明 11159558
捐赠科研通 3246341
什么是DOI,文献DOI怎么找? 1793389
邀请新用户注册赠送积分活动 874417
科研通“疑难数据库(出版商)”最低求助积分说明 804361