Reduced-Dose Deep Learning Reconstruction for Abdominal CT of Liver Metastases

医学 核医学 图像质量 放射科 前瞻性队列研究 内科学 计算机科学 图像(数学) 人工智能
作者
Corey T. Jensen,Shiva Gupta,Mohammed Saleh,Xinming Liu,Vincenzo K. Wong,Usama Salem,Wei Qiao,Ehsan Samei,Nicolaus A. Wagner‐Bartak
出处
期刊:Radiology [Radiological Society of North America]
卷期号:303 (1): 90-98 被引量:60
标识
DOI:10.1148/radiol.211838
摘要

Background Assessment of liver lesions is constrained as CT radiation doses are lowered; evidence suggests deep learning reconstructions mitigate such effects. Purpose To evaluate liver metastases and image quality between reduced-dose deep learning image reconstruction (DLIR) and standard-dose filtered back projection (FBP) contrast-enhanced abdominal CT. Materials and Methods In this prospective Health Insurance Portability and Accountability Act–compliant study (September 2019 through April 2021), participants with biopsy-proven colorectal cancer and liver metastases at baseline CT underwent standard-dose and reduced-dose portal venous abdominal CT in the same breath hold. Three radiologists detected and characterized lesions at standard-dose FBP and reduced-dose DLIR, reported confidence, and scored image quality. Contrast-to-noise ratios for liver metastases were recorded. Summary statistics were reported, and a generalized linear mixed model was used. Results Fifty-one participants (mean age ± standard deviation, 57 years ± 13; 31 men) were evaluated. The mean volume CT dose index was 65.1% lower with reduced-dose CT (12.2 mGy) than with standard-dose CT (34.9 mGy). A total of 161 lesions (127 metastases, 34 benign lesions) with a mean size of 0.7 cm ± 0.3 were identified. Subjective image quality of reduced-dose DLIR was superior to that of standard-dose FBP (P < .001). The mean contrast-to-noise ratio for liver metastases of reduced-dose DLIR (3.9 ± 1.7) was higher than that of standard-dose FBP (3.5 ± 1.4) (P < .001). Differences in detection were identified only for lesions 0.5 cm or smaller: 63 of 65 lesions detected with standard-dose FBP (96.9%; 95% CI: 89.3, 99.6) and 47 lesions with reduced-dose DLIR (72.3%; 95% CI: 59.8, 82.7). Lesion accuracy with standard-dose FBP and reduced-dose DLIR was 80.1% (95% CI: 73.1, 86.0; 129 of 161 lesions) and 67.1% (95% CI: 59.3, 74.3; 108 of 161 lesions), respectively (P = .01). Lower lesion confidence was reported with a reduced dose (P < .001). Conclusion Deep learning image reconstruction (DLIR) improved CT image quality at 65% radiation dose reduction while preserving detection of liver lesions larger than 0.5 cm. Reduced-dose DLIR demonstrated overall inferior characterization of liver lesions and reader confidence. Clinical trial registration no. NCT03151564 © RSNA, 2022 Online supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Murray完成签到,获得积分0
1秒前
LKX心完成签到 ,获得积分10
2秒前
艺艺完成签到,获得积分10
2秒前
英姑应助科研通管家采纳,获得30
4秒前
NexusExplorer应助科研通管家采纳,获得30
4秒前
Orange应助科研通管家采纳,获得10
4秒前
HCLonely应助科研通管家采纳,获得10
4秒前
三黑猫应助科研通管家采纳,获得10
4秒前
HCLonely应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
4秒前
酷不哭哭应助科研通管家采纳,获得10
4秒前
4秒前
AptRank发布了新的文献求助10
4秒前
5秒前
7秒前
科研通AI2S应助jiao采纳,获得10
7秒前
顺心的舞蹈完成签到,获得积分10
9秒前
阿喜发布了新的文献求助10
10秒前
10秒前
李爱国应助mm采纳,获得10
11秒前
天天快乐应助ssc采纳,获得10
11秒前
xiaoma发布了新的文献求助10
12秒前
保安发布了新的文献求助10
12秒前
独特的奇异果完成签到,获得积分10
14秒前
斯文败类应助CC采纳,获得10
14秒前
宋嘉新发布了新的文献求助10
14秒前
15秒前
15秒前
butterfly完成签到 ,获得积分10
16秒前
上官若男应助xin采纳,获得10
16秒前
坦率耳机应助林夕采纳,获得10
16秒前
隐形曼青应助时尚的醉蓝采纳,获得10
17秒前
17秒前
平常的四娘完成签到,获得积分10
17秒前
18秒前
18秒前
18秒前
18秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3222582
求助须知:如何正确求助?哪些是违规求助? 2871280
关于积分的说明 8174713
捐赠科研通 2538283
什么是DOI,文献DOI怎么找? 1370395
科研通“疑难数据库(出版商)”最低求助积分说明 645793
邀请新用户注册赠送积分活动 619592