已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Reduced-Dose Deep Learning Reconstruction for Abdominal CT of Liver Metastases

医学 核医学 图像质量 放射科 前瞻性队列研究 内科学 计算机科学 图像(数学) 人工智能
作者
Corey T. Jensen,Shiva Gupta,Mohammed Saleh,Xinming Liu,Vincenzo K. Wong,Usama Salem,Wei Qiao,Ehsan Samei,Nicolaus A. Wagner‐Bartak
出处
期刊:Radiology [Radiological Society of North America]
卷期号:303 (1): 90-98 被引量:67
标识
DOI:10.1148/radiol.211838
摘要

Background Assessment of liver lesions is constrained as CT radiation doses are lowered; evidence suggests deep learning reconstructions mitigate such effects. Purpose To evaluate liver metastases and image quality between reduced-dose deep learning image reconstruction (DLIR) and standard-dose filtered back projection (FBP) contrast-enhanced abdominal CT. Materials and Methods In this prospective Health Insurance Portability and Accountability Act–compliant study (September 2019 through April 2021), participants with biopsy-proven colorectal cancer and liver metastases at baseline CT underwent standard-dose and reduced-dose portal venous abdominal CT in the same breath hold. Three radiologists detected and characterized lesions at standard-dose FBP and reduced-dose DLIR, reported confidence, and scored image quality. Contrast-to-noise ratios for liver metastases were recorded. Summary statistics were reported, and a generalized linear mixed model was used. Results Fifty-one participants (mean age ± standard deviation, 57 years ± 13; 31 men) were evaluated. The mean volume CT dose index was 65.1% lower with reduced-dose CT (12.2 mGy) than with standard-dose CT (34.9 mGy). A total of 161 lesions (127 metastases, 34 benign lesions) with a mean size of 0.7 cm ± 0.3 were identified. Subjective image quality of reduced-dose DLIR was superior to that of standard-dose FBP (P < .001). The mean contrast-to-noise ratio for liver metastases of reduced-dose DLIR (3.9 ± 1.7) was higher than that of standard-dose FBP (3.5 ± 1.4) (P < .001). Differences in detection were identified only for lesions 0.5 cm or smaller: 63 of 65 lesions detected with standard-dose FBP (96.9%; 95% CI: 89.3, 99.6) and 47 lesions with reduced-dose DLIR (72.3%; 95% CI: 59.8, 82.7). Lesion accuracy with standard-dose FBP and reduced-dose DLIR was 80.1% (95% CI: 73.1, 86.0; 129 of 161 lesions) and 67.1% (95% CI: 59.3, 74.3; 108 of 161 lesions), respectively (P = .01). Lower lesion confidence was reported with a reduced dose (P < .001). Conclusion Deep learning image reconstruction (DLIR) improved CT image quality at 65% radiation dose reduction while preserving detection of liver lesions larger than 0.5 cm. Reduced-dose DLIR demonstrated overall inferior characterization of liver lesions and reader confidence. Clinical trial registration no. NCT03151564 © RSNA, 2022 Online supplemental material is available for this article.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形的若灵完成签到,获得积分10
2秒前
2秒前
fufu发布了新的文献求助10
3秒前
addd发布了新的文献求助10
7秒前
斯文钢笔完成签到 ,获得积分10
8秒前
qiao完成签到 ,获得积分10
12秒前
廷聿完成签到,获得积分10
13秒前
九黎完成签到 ,获得积分10
14秒前
li发布了新的文献求助10
15秒前
柯柯啦啦完成签到,获得积分10
15秒前
addd完成签到,获得积分10
16秒前
景C完成签到 ,获得积分10
19秒前
王富贵完成签到,获得积分10
20秒前
寒梅恋雪完成签到 ,获得积分10
20秒前
XiaoliangXue完成签到,获得积分20
21秒前
fufu完成签到,获得积分10
21秒前
无限猫咪完成签到,获得积分10
22秒前
科研通AI6应助无限猫咪采纳,获得10
28秒前
昵称完成签到,获得积分0
30秒前
32秒前
斯文败类应助科研通管家采纳,获得10
34秒前
今后应助科研通管家采纳,获得10
34秒前
科研通AI2S应助科研通管家采纳,获得10
34秒前
科研通AI2S应助科研通管家采纳,获得10
34秒前
顾矜应助科研通管家采纳,获得10
34秒前
华仔应助科研通管家采纳,获得10
34秒前
35秒前
moon完成签到 ,获得积分10
35秒前
子车茗应助望远Arena采纳,获得30
36秒前
临子完成签到,获得积分10
40秒前
111完成签到 ,获得积分10
41秒前
小龙完成签到,获得积分10
43秒前
44秒前
奋斗慕凝完成签到 ,获得积分10
45秒前
英俊的铭应助杨杨杨采纳,获得10
50秒前
小姚姚完成签到,获得积分10
50秒前
Neyou发布了新的文献求助10
50秒前
纪富完成签到 ,获得积分10
53秒前
55秒前
hehe完成签到,获得积分20
56秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5616976
求助须知:如何正确求助?哪些是违规求助? 4701321
关于积分的说明 14913230
捐赠科研通 4747317
什么是DOI,文献DOI怎么找? 2549156
邀请新用户注册赠送积分活动 1512289
关于科研通互助平台的介绍 1474049