Financial Distress Prediction in an International Context: A Review and Empirical Analysis of Altman's Z‐Score Model

破产 背景(考古学) 精算学 财务困境 预测建模 样品(材料) 财务比率 破产预测 实证研究 计量经济学 经济 业务 会计 计算机科学 财务 统计 数学 机器学习 化学 色谱法 金融体系 古生物学 生物
作者
Edward I. Altman,Małgorzata Iwanicz‐Drozdowska,Erkki K. Laitinen,Arto Suvas
出处
期刊:Journal of International Financial Management and Accounting [Wiley]
卷期号:28 (2): 131-171 被引量:534
标识
DOI:10.1111/jifm.12053
摘要

Abstract This paper assesses the classification performance of the Z‐ Score model in predicting bankruptcy and other types of firm distress, with the goal of examining the model's usefulness for all parties, especially banks that operate internationally and need to assess the failure risk of firms. We analyze the performance of the Z‐ Score model for firms from 31 European and three non‐European countries using different modifications of the original model. This study is the first to offer such a comprehensive international analysis. Except for the United States and China, the firms in the sample are primarily private, and include non‐financial companies across all industrial sectors. We use the original Z ′′‐Score model developed by Altman, Corporate Financial Distress: A Complete Guide to Predicting, Avoiding, and Dealing with Bankruptcy (1983) for private and public manufacturing and non‐manufacturing firms. While there is some evidence that Z‐ Score models of bankruptcy prediction have been outperformed by competing market‐based or hazard models, in other studies, Z‐ Score models perform very well. Without a comprehensive international comparison, however, the results of competing models are difficult to generalize. This study offers evidence that the general Z‐ Score model works reasonably well for most countries (the prediction accuracy is approximately 0.75) and classification accuracy can be improved further (above 0.90) by using country‐specific estimation that incorporates additional variables.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sweetbearm应助通~采纳,获得10
刚刚
神凰完成签到,获得积分10
刚刚
Z小姐发布了新的文献求助10
1秒前
NexusExplorer应助白泽采纳,获得10
1秒前
2秒前
2秒前
火星上妙梦完成签到 ,获得积分10
2秒前
赘婿应助mayungui采纳,获得10
2秒前
贾不可发布了新的文献求助10
3秒前
英俊梦槐发布了新的文献求助30
3秒前
Xu完成签到,获得积分10
4秒前
4秒前
秀丽千山完成签到,获得积分10
4秒前
5秒前
6秒前
哈哈哈哈完成签到,获得积分10
6秒前
沧海泪发布了新的文献求助10
7秒前
小胡先森应助凤凰山采纳,获得10
7秒前
一一完成签到,获得积分10
7秒前
惠惠发布了新的文献求助10
7秒前
shotgod完成签到,获得积分20
8秒前
科研通AI5应助蕾子采纳,获得10
8秒前
happy杨完成签到 ,获得积分10
8秒前
lichaoyes发布了新的文献求助10
8秒前
8秒前
Owen应助通~采纳,获得10
8秒前
封闭货车发布了新的文献求助10
9秒前
9秒前
www发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
11秒前
shotgod发布了新的文献求助10
11秒前
ling玲完成签到,获得积分10
11秒前
奔奔发布了新的文献求助10
11秒前
SweepingMonk应助虚心盼晴采纳,获得10
12秒前
13秒前
汉堡包应助XXF采纳,获得10
13秒前
wzh完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794