Elucidating the Effects of Additives on the Lipon/Electrode Interface, with a Focus on Mechanical Strain Effect

电极 材料科学 光学(聚焦) 拉伤 接口(物质) 复合材料 化学 医学 光学 解剖 物理 毛细管数 物理化学 毛细管作用
作者
Kevin Thai,Eunseok Lee
出处
期刊:Meeting abstracts 卷期号:MA2016-01 (4): 407-407 被引量:1
标识
DOI:10.1149/ma2016-01/4/407
摘要

All-solid-state Li-ion batteries (ASSLIB), which replace the liquid electrolyte with solid materials, are expected to bring the improved chemical and structural stability and higher volumetric energy density than conventional Li-ion batteries. An emergent task for the next generation ASSLIB is to develop novel solid electrolyte material that has competitive Li-ion conductivity. The glassy lithium-phosphorus oxynitride (LiPON) has attracted attentions as a good candidate for that, however its practical rate capability in a full cell has been measured to be unexpectedly low, far below the computational predictions, which was attributed to the interface between solid electrolyte and cathode. Recently, one research team has reported that the rate capability of LiPON-ASSLIB could be highly improved by adding BaTiO3 (BTO) nanoparticles to the LiPON/electrode interface (Adv. Energy Mater. 4, 1301416). They hypothesized that that the space-charge layer formed in the interface area was the origin of low Li-ion conductivity and the strong dielectric behavior of BTO additive rectified it. However, the verification of the claimed hypothesis has not been made due to experimental difficulty in the measurements of the space-charge layer. Rigorous computational study at atomic scales will enable us to verify this hypothesis and understand the mechanism of the improved rate capability. In this work, we perform first-principles calculations to 1) model the LiPON/Ni-Mn spinel interface structure with and without BTO additive and 2) investigate the effects of BTO additive on the Li-ion conductivity. First, a model for the bulk LiPON is developed. There are several chemical compositions of LiPON (LixPOyNz; x=2y+3z-5). We select one sample structure, Li4PO3N, among them, for efficient study. The bulk Li4PO3N is obtained by substituting N ions for oxygen and adding extra Li ions to Li3PO4 crystal. Several ionic configurations that have different N substitution and Li addition are examined and the most stable one is identified. Next, the obtained bulk Li4PO3N is cropped and assembled with Ni-Mn spinel slab to create a model of the interface between LiPON electrolyte and Ni-Mn spinel cathode. We examine several combinations of different contacting facets and terminations, assuming that the interface structure will tend to have similar oxygen arrangement over Li4PO3N and Ni-Mn spinel parts, and find the most thermodynamically favorable one. Finally, we add BTO in the interface model to investigate its effect on the Li-ion conductivity. The activation energy barrier of Li-ion diffusion will be calculated in each case: bulk Li4PO3N, Li4PO3N/Ni-Mn spinel, and Li4PO3N-BTO/Ni-Mn spinel, and compared to investigate the effect of BTO additive on the Li-ion conductivity. From analysis on the ions distribution and electric charge distribution, we propose a structural distortion of the Li4PO3N part, which is ascribed to the lattice mismatch between the Li4PO3N and Ni-Mn spinel, can be more significant factor to determine the ionic conductivity than the space-charge layer. To support our suggestion, we calculate the activation energy barrier of Li-ion diffusion through the bulk Li4PO3N by applying different mechanical strains.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
博士搏斗完成签到 ,获得积分10
14秒前
巫马白亦完成签到,获得积分10
16秒前
飞云完成签到 ,获得积分10
16秒前
852应助自由老头采纳,获得10
28秒前
zhang完成签到,获得积分10
41秒前
42秒前
繁荣的代秋完成签到 ,获得积分10
45秒前
自由老头发布了新的文献求助10
48秒前
脑洞疼应助SCINEXUS采纳,获得10
50秒前
wanghao完成签到 ,获得积分10
1分钟前
Turbogao完成签到 ,获得积分10
1分钟前
LIGANG1111完成签到 ,获得积分10
1分钟前
1分钟前
liguanyu1078完成签到,获得积分10
1分钟前
卡卡完成签到,获得积分10
1分钟前
陈无敌完成签到 ,获得积分10
1分钟前
lingshan完成签到 ,获得积分10
1分钟前
星空完成签到 ,获得积分10
1分钟前
CLTTT完成签到,获得积分10
1分钟前
书生也是小郎中完成签到 ,获得积分10
1分钟前
柏忆南完成签到 ,获得积分10
1分钟前
wcw完成签到 ,获得积分10
1分钟前
维维完成签到 ,获得积分10
1分钟前
是我不得开心妍完成签到 ,获得积分10
1分钟前
Jonsnow完成签到 ,获得积分10
1分钟前
1分钟前
lhjct0313完成签到 ,获得积分10
1分钟前
Lee完成签到,获得积分10
1分钟前
大脸猫完成签到 ,获得积分10
1分钟前
wqc2060完成签到,获得积分10
1分钟前
凤凰之玉完成签到,获得积分10
2分钟前
愿景完成签到 ,获得积分10
2分钟前
平常从蓉完成签到,获得积分10
2分钟前
lxl1996完成签到,获得积分10
2分钟前
2分钟前
jbear完成签到 ,获得积分10
2分钟前
开放又亦完成签到 ,获得积分10
2分钟前
王敏完成签到 ,获得积分10
2分钟前
LiangRen完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
XAFS for Everyone (2nd Edition) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134020
求助须知:如何正确求助?哪些是违规求助? 2784845
关于积分的说明 7768824
捐赠科研通 2440241
什么是DOI,文献DOI怎么找? 1297353
科研通“疑难数据库(出版商)”最低求助积分说明 624925
版权声明 600792