亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

TICMR: Total Image Constrained Material Reconstruction via Nonlocal Total Variation Regularization for Spectral CT

迭代重建 全变差去噪 正规化(语言学) 投影(关系代数) 算法 数学 计算机科学 图像复原 信号重构 计算机视觉 人工智能 图像处理 图像(数学) 信号处理 电信 雷达
作者
Jiulong Liu,Huanjun Ding,Sabee Molloi,Xiaoqun Zhang,Hao Gao
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:35 (12): 2578-2586 被引量:44
标识
DOI:10.1109/tmi.2016.2587661
摘要

This work develops a material reconstruction method for spectral CT, namely Total Image Constrained Material Reconstruction (TICMR), to maximize the utility of projection data in terms of both spectral information and high signal-to-noise ratio (SNR). This is motivated by the following fact: when viewed as a spectrally-integrated measurement, the projection data can be used to reconstruct a total image without spectral information, which however has a relatively high SNR; when viewed as a spectrally-resolved measurement, the projection data can be utilized to reconstruct the material composition, which however has a relatively low SNR. The material reconstruction synergizes material decomposition and image reconstruction, i.e., the direct reconstruction of material compositions instead of a two-step procedure that first reconstructs images and then decomposes images. For material reconstruction with high SNR, we propose TICMR with nonlocal total variation (NLTV) regularization. That is, first we reconstruct a total image using spectrally-integrated measurement without spectral binning, and build the NLTV weights from this image that characterize nonlocal image features; then the NLTV weights are incorporated into a NLTV-based iterative material reconstruction scheme using spectrally-binned projection data, so that these weights serve as a high-SNR reference to regularize material reconstruction. Note that the nonlocal property of NLTV is essential for material reconstruction, since material compositions may have significant local intensity variations although their structural information is often similar. In terms of solution algorithm, TICMR is formulated as an iterative reconstruction method with the NLTV regularization, in which the nonlocal divergence is utilized based on the adjoint relationship. The alternating direction method of multipliers is developed to solve this sparsity optimization problem. The proposed TICMR method was validated using both simulated and experimental data. In comparison with FBP and total-variation-based iterative method, TICMR had improved image quality, e.g., contrast-to-noise ratio and spatial resolution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
KDS发布了新的文献求助10
14秒前
酷酷问夏完成签到 ,获得积分10
19秒前
22秒前
丸子完成签到 ,获得积分10
27秒前
27秒前
一口辰发布了新的文献求助10
34秒前
yangzai完成签到 ,获得积分10
37秒前
善学以致用应助KDS采纳,获得10
39秒前
眉姐姐的藕粉桂花糖糕完成签到 ,获得积分10
53秒前
科研通AI5应助犹豫的踏歌采纳,获得10
54秒前
雪飞杨完成签到 ,获得积分10
56秒前
pp发布了新的文献求助10
1分钟前
1分钟前
科研猫头鹰完成签到,获得积分10
1分钟前
1分钟前
pp完成签到,获得积分20
1分钟前
Xiaoxiao应助科研通管家采纳,获得10
1分钟前
香蕉觅云应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Xiaoxiao应助科研通管家采纳,获得10
1分钟前
1分钟前
Billy发布了新的文献求助10
2分钟前
Ava应助LeezZZZ采纳,获得10
2分钟前
曹年跃完成签到,获得积分10
2分钟前
犹豫的踏歌完成签到,获得积分10
2分钟前
善学以致用应助Elton采纳,获得10
3分钟前
3分钟前
3分钟前
Elton发布了新的文献求助10
3分钟前
LeezZZZ发布了新的文献求助10
3分钟前
么么完成签到 ,获得积分10
3分钟前
丘比特应助Elton采纳,获得10
3分钟前
852应助一口辰采纳,获得10
3分钟前
华仔应助俞思含采纳,获得10
3分钟前
3分钟前
Elton发布了新的文献求助10
3分钟前
3分钟前
ly发布了新的文献求助10
3分钟前
俞思含发布了新的文献求助10
3分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555707
求助须知:如何正确求助?哪些是违规求助? 3131341
关于积分的说明 9390816
捐赠科研通 2831055
什么是DOI,文献DOI怎么找? 1556317
邀请新用户注册赠送积分活动 726483
科研通“疑难数据库(出版商)”最低求助积分说明 715803