Magnetocardiography scoring system to predict the presence of obstructive coronary artery disease

医学 冠状动脉疾病 心磁图 心脏病学 内科学 接收机工作特性 逻辑回归 狭窄 切断 预测值 试验预测值 推导 曲线下面积 放射科 动脉 物理 量子力学
作者
Eun‐Seok Shin,Seung Gu Park,Ahmed Saleh,Yat‐Yin Lam,Jong Bhak,F. Jung,Sumiharu Morita,Johannes Brachmann
出处
期刊:Clinical Hemorheology and Microcirculation [IOS Press]
卷期号:70 (4): 365-373 被引量:6
标识
DOI:10.3233/ch-189301
摘要

BACKGROUND: Magnetocardiography (MCG) has been proposed as a non-invasive and functional technique with high accuracy for diagnosis of myocardial ischemia. OBJECTIVE: This study sought to develop a novel scoring system of MCG for predicting the presence of significant obstructive coronary artery di sease (CAD). METHODS: In a training set of 108 subjects, predictors of ≥70% stenosis in at least one major coronary vessel were prospectively identified from MCG variables. The final model was then retrospectively validated in a separate set of 45 subjects. RESULTS: In the multivariable logistic regression, among those in the training set, elevated scores were predictive of ≥70% stenosis in all subjects (OR: 40.85; 95% CI: 6.28–265.90; p < 0.001). In the validation set, the score had an area under the receiver-operating characteristic curve of 0.91 (p < 0.001) for ≥70% stenosis. At an optimal cutoff, the score had 89% sensitivity, 77% specificity, 74% positive predictive value (PPV), 91% negative predictive value (NPV), and 82% accuracy for ≥70% stenosis. Partitioning the score into three levels of predicted risk, 91% of subjects could be identified or excluding CAD (81% PPV and 84% NPV). CONCLUSION: We described an MCG score with high accuracy for predicting the presence of anatomically significant CAD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
任性翠安发布了新的文献求助10
刚刚
XYY发布了新的文献求助10
刚刚
2秒前
Xx丶发布了新的文献求助10
2秒前
2秒前
搜集达人应助huasjbm采纳,获得10
2秒前
wenlin完成签到,获得积分10
2秒前
共享精神应助853225598采纳,获得10
2秒前
4秒前
paper完成签到,获得积分10
5秒前
5秒前
科研通AI2S应助我爱看文献采纳,获得10
5秒前
yemiao发布了新的文献求助10
6秒前
曾经小虾米完成签到,获得积分10
7秒前
douyq发布了新的文献求助10
8秒前
9秒前
vincentbioinfo完成签到,获得积分10
10秒前
小萧完成签到,获得积分10
10秒前
11秒前
11秒前
12秒前
wanci应助高高诗柳采纳,获得10
12秒前
陈麦子发布了新的文献求助10
13秒前
14秒前
LZH发布了新的文献求助10
15秒前
15秒前
天天快乐应助夭夭采纳,获得10
16秒前
坚持每天读10h书完成签到 ,获得积分20
16秒前
Sunnig盈完成签到,获得积分10
17秒前
Ali应助YU采纳,获得10
17秒前
17秒前
ZhangYunxuan发布了新的文献求助10
17秒前
科研通AI2S应助难摧采纳,获得10
17秒前
17秒前
17秒前
18秒前
18秒前
Lucas应助稞小弟采纳,获得10
19秒前
白白白完成签到 ,获得积分10
19秒前
Sunnig盈发布了新的文献求助10
19秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145513
求助须知:如何正确求助?哪些是违规求助? 2796938
关于积分的说明 7822093
捐赠科研通 2453230
什么是DOI,文献DOI怎么找? 1305516
科研通“疑难数据库(出版商)”最低求助积分说明 627512
版权声明 601464