Hierarchical microstructure design to tune the mechanical behavior of an interstitial TRIP-TWIP high-entropy alloy

材料科学 微观结构 Twip公司 高熵合金 合金 可塑性 退火(玻璃) 复合材料 粒度 再结晶(地质) 晶体孪晶 应变硬化指数 冶金 生物 古生物学
作者
Jing Su,Dierk Raabe,Zhiming Li
出处
期刊:Acta Materialia [Elsevier]
卷期号:163: 40-54 被引量:345
标识
DOI:10.1016/j.actamat.2018.10.017
摘要

We demonstrate a novel approach of utilizing a hierarchical microstructure design to improve the mechanical properties of an interstitial carbon doped high-entropy alloy (HEA) by cold rolling and subsequent tempering and annealing. Bimodal microstructures were produced in the tempered specimens consisting of nano-grains (∼50 nm) in the vicinity of shear bands and recovered parent grains (10–35 μm) with pre-existing nano-twins. Upon annealing, partial recrystallization led to trimodal microstructures characterized by small recrystallized grains (<1 μm) associated with shear bands, medium-sized grains (1–6 μm) recrystallized through subgrain rotation or coalescence of parent grains and retained large un-recrystallized grains. To reveal the influence of these hierarchical microstructures on the strength-ductility synergy, the underlying deformation mechanisms and the resultant strain hardening were investigated. A superior yield strength of 1.3 GPa was achieved in the bimodal microstructure, more than two times higher than that of the fully recrystallized microstructure, owing to the presence of nano-sized grains and nano-twins. The ductility was dramatically improved from 14% to 60% in the trimodal structure compared to the bimodal structure due to the appearance of a multi-stage work hardening behavior. This important strain hardening sequence was attributed to the sequential activation of transformation-induced plasticity (TRIP) and twinning-induced plasticity (TWIP) effects as a result of the wide variation in phase stability promoted by the grain size hierarchy. These findings open a broader window for achieving a wide spectrum of mechanical properties for HEAs, making better use of not only compositional variations but also microstructure and phase stability tuning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冬雪完成签到 ,获得积分10
3秒前
郑盼秋完成签到,获得积分10
5秒前
yyy完成签到,获得积分10
5秒前
7秒前
传奇3应助michaelzy1127采纳,获得20
7秒前
北城发布了新的文献求助10
8秒前
leecarp完成签到,获得积分10
10秒前
狂野世立完成签到,获得积分10
15秒前
霹雳娇娃完成签到,获得积分10
16秒前
18秒前
大个应助Yolanda采纳,获得10
19秒前
大龙哥886应助一二采纳,获得10
22秒前
23秒前
我是老大应助zf采纳,获得10
23秒前
24秒前
云华完成签到,获得积分10
26秒前
26秒前
bkagyin应助小秀采纳,获得10
27秒前
朴素小霜完成签到 ,获得积分10
28秒前
lss发布了新的文献求助10
29秒前
zf完成签到,获得积分10
30秒前
jieshipingan关注了科研通微信公众号
32秒前
33秒前
桑姊关注了科研通微信公众号
37秒前
38秒前
39秒前
Mikasaaaaa发布了新的文献求助10
39秒前
39秒前
羊村第一巴图鲁完成签到,获得积分10
41秒前
张艺完成签到,获得积分10
42秒前
42秒前
Ronggaz发布了新的文献求助30
43秒前
悦耳的小夏完成签到,获得积分20
44秒前
科研12345完成签到 ,获得积分10
45秒前
45秒前
45秒前
仲夏完成签到,获得积分10
46秒前
46秒前
芝麻汤圆完成签到,获得积分10
47秒前
47秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155762
求助须知:如何正确求助?哪些是违规求助? 2807008
关于积分的说明 7871439
捐赠科研通 2465303
什么是DOI,文献DOI怎么找? 1312209
科研通“疑难数据库(出版商)”最低求助积分说明 629947
版权声明 601905