CMA-ES公司
数学优化
进化策略
计算机科学
进化算法
多目标优化
适应(眼睛)
最优化问题
比例(比率)
可扩展性
协方差矩阵
集合(抽象数据类型)
人口
数学
算法
生物
人口学
社会学
神经科学
物理
程序设计语言
数据库
量子力学
作者
Huangke Chen,Ran Cheng,Jinming Wen,Haifeng Li,Jian Weng
标识
DOI:10.1016/j.ins.2018.10.007
摘要
Despite the recent development in evolutionary multi- and many-objective optimization, the problems with large-scale decision variables still remain challenging. In this work, we propose a scalable small subpopulations based covariance matrix adaptation evolution strategy, namely S3-CMA-ES, for solving many-objective optimization problems with large-scale decision variables. The proposed S3-CMA-ES attempts to approximate the set of Pareto-optimal solutions using a series of small subpopulations instead of a whole population, where each subpopulation converges to only one solution. In the proposed S3-CMA-ES, a diversity improvement strategy is designed to generate and select new solutions. The performance of S3-CMA-ES is compared with five representative algorithms on 36 test instances with 5–15 objectives and 500–1500 decision variables. The empirical results demonstrate the superiority of the proposed S3-CMA-ES.
科研通智能强力驱动
Strongly Powered by AbleSci AI