Q-learning approach to coordinated optimization of passenger inflow control with train skip-stopping on a urban rail transit line

城市轨道交通 流入 控制(管理) 方案(数学) 过境(卫星) 计算机科学 工程类 轨道交通 公共交通 运筹学 运输工程 直线(几何图形) 人工智能 数学 数学分析 物理 几何学 机械
作者
Zhibin Jiang,Jinjing Gu,Wei Fan,Wei Liu,Bingqin Zhu
出处
期刊:Computers & Industrial Engineering [Elsevier BV]
卷期号:127: 1131-1142 被引量:73
标识
DOI:10.1016/j.cie.2018.05.050
摘要

Abstract In the case of an over-crowded urban rail transit (URT) line, a large number of passengers may be left stranded and daily timetable may become infeasible. This paper proposes a coordinated optimization scheme for a URT line, which combines both the coordinated passenger inflow control with train rescheduling strategies. With the aim of minimizing the penalty value of passengers being stranded along the whole line, the coordinated passenger inflow control helps relieve demand pressure and ensure safety at over-crowded URT stations while the train rescheduling of skip-stopping helps to balance the utilization of train capacity. A novel Q-learning based approach to this combination optimization problem is developed. Simulation experiments are carried out on a real-world URT line in Shanghai. Basic principles of Q-learning are presented, which consist of the environment and its states, learning agents and their respective actions, and rewards. The results show that the coordinated optimization scheme solved by the Q-learning approach is effective in relieving the passenger congestion on the URT line. The Q-learning approach can offer accurate scheme to deal with the problem of passenger congestion and train operation on a URT line.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JayeChen发布了新的文献求助100
刚刚
社牛小柯发布了新的文献求助10
1秒前
2秒前
大个应助张浩采纳,获得10
3秒前
南巷完成签到,获得积分10
3秒前
4秒前
4秒前
ED应助虚幻靖易采纳,获得10
4秒前
李爱国应助淡淡梦容采纳,获得10
5秒前
lalala发布了新的文献求助10
5秒前
南巷发布了新的文献求助10
6秒前
Jasper应助时尚初南采纳,获得10
6秒前
courage完成签到,获得积分10
7秒前
搜集达人应助祖安露采纳,获得10
8秒前
善学以致用应助小周周采纳,获得10
8秒前
GXLong发布了新的文献求助10
9秒前
Hey发布了新的文献求助20
9秒前
9秒前
10秒前
柯米克发布了新的文献求助10
10秒前
lm发布了新的文献求助10
13秒前
CipherSage应助体贴汽车采纳,获得10
15秒前
两味愚发布了新的文献求助10
15秒前
16秒前
18秒前
小马甲应助GXLong采纳,获得10
18秒前
18秒前
CodeCraft应助柯米克采纳,获得10
18秒前
深情安青应助淡淡梦容采纳,获得10
19秒前
苏利文发布了新的文献求助30
20秒前
JayeChen完成签到,获得积分10
20秒前
20秒前
屈绮兰应助张张采纳,获得30
21秒前
ding应助玉小赤采纳,获得10
21秒前
22秒前
愉快的雪珍完成签到,获得积分10
23秒前
sylnd126发布了新的文献求助10
23秒前
23秒前
KK发布了新的文献求助10
24秒前
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988732
求助须知:如何正确求助?哪些是违规求助? 3531027
关于积分的说明 11252281
捐赠科研通 3269732
什么是DOI,文献DOI怎么找? 1804764
邀请新用户注册赠送积分活动 881869
科研通“疑难数据库(出版商)”最低求助积分说明 809021