Super SloMo: High Quality Estimation of Multiple Intermediate Frames for Video Interpolation

计算机科学 运动插值 光流 计算机视觉 插值(计算机图形学) 人工智能 能见度 帧(网络) 运动估计 运动补偿 算法 运动(物理) 块匹配算法 视频跟踪 图像(数学) 视频处理 物理 光学 电信
作者
Huaizu Jiang,Deqing Sun,Varan Jampani,Ming–Hsuan Yang,Erik Learned-Miller,Jan Kautz
标识
DOI:10.1109/cvpr.2018.00938
摘要

Given two consecutive frames, video interpolation aims at generating intermediate frame(s) to form both spatially and temporally coherent video sequences. While most existing methods focus on single-frame interpolation, we propose an end-to-end convolutional neural network for variable-length multi-frame video interpolation, where the motion interpretation and occlusion reasoning are jointly modeled. We start by computing bi-directional optical flow between the input images using a U-Net architecture. These flows are then linearly combined at each time step to approximate the intermediate bi-directional optical flows. These approximate flows, however, only work well in locally smooth regions and produce artifacts around motion boundaries. To address this shortcoming, we employ another U-Net to refine the approximated flow and also predict soft visibility maps. Finally, the two input images are warped and linearly fused to form each intermediate frame. By applying the visibility maps to the warped images before fusion, we exclude the contribution of occluded pixels to the interpolated intermediate frame to avoid artifacts. Since none of our learned network parameters are time-dependent, our approach is able to produce as many intermediate frames as needed. To train our network, we use 1,132 240-fps video clips, containing 300K individual video frames. Experimental results on several datasets, predicting different numbers of interpolated frames, demonstrate that our approach performs consistently better than existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助PhD-SCAU采纳,获得30
刚刚
EddyLalala完成签到,获得积分10
2秒前
淡淡文博完成签到,获得积分20
2秒前
EddyLalala发布了新的文献求助10
4秒前
Jam发布了新的文献求助10
6秒前
wanci应助wwwwppp采纳,获得10
7秒前
6rkuttsmdt完成签到,获得积分10
7秒前
852应助小青虫采纳,获得10
9秒前
彭于晏应助家园采纳,获得30
10秒前
13秒前
无语的梦菲完成签到,获得积分10
16秒前
Xiaojiu完成签到 ,获得积分10
17秒前
17秒前
seon发布了新的文献求助10
19秒前
酷酷的老太完成签到,获得积分10
25秒前
灵巧的馒头完成签到,获得积分20
29秒前
31秒前
31秒前
健壮保温杯完成签到,获得积分10
32秒前
michellewu完成签到 ,获得积分10
35秒前
wwwwppp发布了新的文献求助10
35秒前
Nostalgia完成签到,获得积分10
35秒前
宝贝蛋完成签到,获得积分10
35秒前
瓜子完成签到,获得积分10
38秒前
38秒前
英俊的铭应助科研通管家采纳,获得10
39秒前
CipherSage应助科研通管家采纳,获得10
39秒前
Estrella应助科研通管家采纳,获得10
39秒前
汉堡包应助科研通管家采纳,获得10
39秒前
深情安青应助科研通管家采纳,获得10
39秒前
星辰大海应助科研通管家采纳,获得10
39秒前
科研通AI2S应助科研通管家采纳,获得10
40秒前
共享精神应助科研通管家采纳,获得10
40秒前
40秒前
传奇3应助科研通管家采纳,获得10
40秒前
Lucas应助共产主义接班人采纳,获得10
40秒前
标致的初之完成签到,获得积分10
42秒前
42秒前
44秒前
wangminting完成签到 ,获得积分10
45秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735903
求助须知:如何正确求助?哪些是违规求助? 3279592
关于积分的说明 10016324
捐赠科研通 2996292
什么是DOI,文献DOI怎么找? 1644012
邀请新用户注册赠送积分活动 781709
科研通“疑难数据库(出版商)”最低求助积分说明 749425