高光谱成像
人工智能
模式识别(心理学)
主成分分析
计算机科学
棱锥(几何)
高斯分布
图像融合
支持向量机
特征提取
降维
上下文图像分类
像素
特征(语言学)
计算机视觉
图像(数学)
数学
语言学
哲学
物理
几何学
量子力学
作者
Shutao Li,Qiaobo Hao,Xudong Kang,Jón Atli Benediktsson
标识
DOI:10.1109/jstars.2018.2856741
摘要
In this paper, we propose a segmented principal component analysis (SPCA) and Gaussian pyramid decomposition based multiscale feature fusion method for the classification of hyperspectral images. First, considering the band-to-band cross correlations of objects, the SPCA method is utilized for the spectral dimension reduction of the hyperspectral image. Then, the dimension-reduced image is decomposed into several Gaussian pyramids to extract the multiscale features. Next, the SPCA method is performed again to compute the fused SPCA based Gaussian pyramid features (SPCA-GPs). Finally, the performance of the SPCA-GPs is evaluated using the support vector machine classifier. Experiments performed on three widely used hyperspectral images show that the proposed SPCA-GPs method outperforms several compared classification methods in terms of classification accuracies and computational cost.
科研通智能强力驱动
Strongly Powered by AbleSci AI