Hyperspectral Classification Based on Lightweight 3-D-CNN With Transfer Learning

计算机科学 过度拟合 人工智能 卷积神经网络 高光谱成像 学习迁移 模式识别(心理学) 上下文图像分类 数据建模 深度学习 RGB颜色模型 人工神经网络 图像(数学) 数据库
作者
Haokui Zhang,Ying Li,Yenan Jiang,Peng Wang,Qiang Shen,Chunhua Shen
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:57 (8): 5813-5828 被引量:182
标识
DOI:10.1109/tgrs.2019.2902568
摘要

Recently, hyperspectral image (HSI) classification approaches based on deep learning (DL) models have been proposed and shown promising performance. However, because of very limited available training samples and massive model parameters, DL methods may suffer from overfitting. In this paper, we propose an end-to-end 3-D lightweight convolutional neural network (CNN) (abbreviated as 3-D-LWNet) for limited samples-based HSI classification. Compared with conventional 3-D-CNN models, the proposed 3-D-LWNet has a deeper network structure, less parameters, and lower computation cost, resulting in better classification performance. To further alleviate the small sample problem, we also propose two transfer learning strategies: 1) cross-sensor strategy, in which we pretrain a 3-D model in the source HSI data sets containing a greater number of labeled samples and then transfer it to the target HSI data sets and 2) cross-modal strategy, in which we pretrain a 3-D model in the 2-D RGB image data sets containing a large number of samples and then transfer it to the target HSI data sets. In contrast to previous approaches, we do not impose restrictions over the source data sets, in which they do not have to be collected by the same sensors as the target data sets. Experiments on three public HSI data sets captured by different sensors demonstrate that our model achieves competitive performance for HSI classification compared to several state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LaTeXer应助焰色天雷采纳,获得200
1秒前
失眠夏山完成签到,获得积分10
1秒前
王旭完成签到,获得积分10
2秒前
www完成签到,获得积分10
2秒前
3秒前
4秒前
Stranger发布了新的文献求助10
4秒前
5秒前
fhghhhjh完成签到,获得积分10
5秒前
曹笑笑完成签到,获得积分10
6秒前
6秒前
Firmian发布了新的文献求助10
6秒前
科研通AI5应助欣慰妙海采纳,获得30
6秒前
朱灭龙发布了新的文献求助10
6秒前
小刘完成签到,获得积分10
7秒前
XavierLee发布了新的文献求助10
7秒前
传奇3应助kkkkkoi采纳,获得10
8秒前
重要的夏天完成签到,获得积分10
8秒前
xinjie完成签到,获得积分10
8秒前
9秒前
小王小王完成签到 ,获得积分10
10秒前
天天快乐应助沉默的幻枫采纳,获得10
11秒前
wanci应助科研通管家采纳,获得10
12秒前
香蕉觅云应助科研通管家采纳,获得10
12秒前
沉静瑾瑜完成签到,获得积分10
12秒前
key应助科研通管家采纳,获得10
12秒前
Jasper应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
李健应助科研通管家采纳,获得10
12秒前
OK完成签到,获得积分10
12秒前
kingwill应助科研通管家采纳,获得20
12秒前
隐形曼青应助科研通管家采纳,获得10
12秒前
orixero应助科研通管家采纳,获得10
12秒前
星辰大海应助科研通管家采纳,获得10
12秒前
852应助科研通管家采纳,获得10
13秒前
wanci应助科研通管家采纳,获得10
13秒前
13秒前
kingwill应助科研通管家采纳,获得20
13秒前
点点完成签到,获得积分10
13秒前
NexusExplorer应助科研通管家采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4546674
求助须知:如何正确求助?哪些是违规求助? 3977829
关于积分的说明 12317357
捐赠科研通 3646236
什么是DOI,文献DOI怎么找? 2008079
邀请新用户注册赠送积分活动 1043641
科研通“疑难数据库(出版商)”最低求助积分说明 932363