Hyperspectral Classification Based on Lightweight 3-D-CNN With Transfer Learning

计算机科学 过度拟合 人工智能 卷积神经网络 高光谱成像 学习迁移 模式识别(心理学) 上下文图像分类 数据建模 深度学习 RGB颜色模型 人工神经网络 图像(数学) 数据库
作者
Haokui Zhang,Ying Li,Yenan Jiang,Peng Wang,Qiang Shen,Chunhua Shen
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:57 (8): 5813-5828 被引量:182
标识
DOI:10.1109/tgrs.2019.2902568
摘要

Recently, hyperspectral image (HSI) classification approaches based on deep learning (DL) models have been proposed and shown promising performance. However, because of very limited available training samples and massive model parameters, DL methods may suffer from overfitting. In this paper, we propose an end-to-end 3-D lightweight convolutional neural network (CNN) (abbreviated as 3-D-LWNet) for limited samples-based HSI classification. Compared with conventional 3-D-CNN models, the proposed 3-D-LWNet has a deeper network structure, less parameters, and lower computation cost, resulting in better classification performance. To further alleviate the small sample problem, we also propose two transfer learning strategies: 1) cross-sensor strategy, in which we pretrain a 3-D model in the source HSI data sets containing a greater number of labeled samples and then transfer it to the target HSI data sets and 2) cross-modal strategy, in which we pretrain a 3-D model in the 2-D RGB image data sets containing a large number of samples and then transfer it to the target HSI data sets. In contrast to previous approaches, we do not impose restrictions over the source data sets, in which they do not have to be collected by the same sensors as the target data sets. Experiments on three public HSI data sets captured by different sensors demonstrate that our model achieves competitive performance for HSI classification compared to several state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
英姑应助hh采纳,获得10
1秒前
小宋发布了新的文献求助10
1秒前
新火发布了新的文献求助10
2秒前
2秒前
7秒前
7秒前
BANG完成签到,获得积分10
8秒前
8秒前
brolliLuo发布了新的文献求助10
9秒前
清新的宛丝完成签到,获得积分10
9秒前
酷波er应助小胡采纳,获得10
12秒前
小智发布了新的文献求助10
13秒前
吴小胖发布了新的文献求助10
13秒前
顾矜应助meimei采纳,获得30
15秒前
庾摇伽完成签到 ,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
16秒前
情怀应助吴小胖采纳,获得10
18秒前
20秒前
20秒前
20秒前
22秒前
cheng完成签到,获得积分10
22秒前
value发布了新的文献求助30
24秒前
嗯嗯发布了新的文献求助10
25秒前
细心的紫丝完成签到,获得积分10
25秒前
充电宝应助小智采纳,获得10
26秒前
gattina发布了新的文献求助10
27秒前
科目三应助adam采纳,获得10
27秒前
28秒前
29秒前
allzzwell发布了新的文献求助10
29秒前
30秒前
30秒前
李健的小迷弟应助12345tty采纳,获得10
31秒前
回穆完成签到 ,获得积分10
31秒前
小宋发布了新的文献求助10
31秒前
小蘑菇应助彤彤彤红红红采纳,获得10
32秒前
bxxxxx完成签到,获得积分10
32秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959791
求助须知:如何正确求助?哪些是违规求助? 3506016
关于积分的说明 11127539
捐赠科研通 3237976
什么是DOI,文献DOI怎么找? 1789411
邀请新用户注册赠送积分活动 871758
科研通“疑难数据库(出版商)”最低求助积分说明 803019