A Deep Learning Iris Recognition Method Based on Capsule Network Architecture

计算机科学 子网 深度学习 人工智能 虹膜识别 卷积神经网络 模式识别(心理学) 生物识别 特征提取 稳健性(进化) 网络体系结构 机器学习 计算机安全 生物化学 基因 化学
作者
Tianming Zhao,Yuanning Liu,Guang Huo,Xiaodong Zhu
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:7: 49691-49701 被引量:104
标识
DOI:10.1109/access.2019.2911056
摘要

Iris recognition is one of the most representative identification technologies in biometric recognition, which is widely used in various fields. Recently, many deep learning methods have been used in biometric recognition, owing to their advantages such as automatic learning, high accuracy, and strong generalization ability. The deep convolutional neural network (CNN) is the mainstream method of image processing widely used in many domains, but it has poor anti-noise capacity in image classification and is easily affected by slight disturbances. CNN also needs a large number of samples for training. The recent capsule network not only has high recognition accuracy in classification tasks but can also learn part-whole relationships, increasing the robustness of the model. Furthermore, it can be trained using a small number of samples. In this paper, we propose a deep learning method based on the capsule network architecture in iris recognition. The structure detail of the network is adjusted, and we provide a modified routing algorithm based on the dynamic routing between two capsule layers to make this technique adapt to iris recognition. Migration learning makes the deep learning method available even when the number of samples is limited. Therefore, three state-of-the-art pretrained models, VGG16, InceptionV3, and ResNet50, are introduced. We divide the three networks into a series of subnetwork structures according to the number of their major constituent blocks. They are used as the convolutional part to extract primary features, instead of a single convolutional layer in the capsule network. Our experiments are conducted on three iris datasets, JluIrisV3.1, JluIrisV4, and CASIA-V4 Lamp, to analyze the performance of different network structures. We also test the proposed networks in simulated strong and weak light environments, showing that the networks with capsule architecture are more stable than those without.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
罗四夕完成签到,获得积分10
刚刚
TangLin完成签到,获得积分10
1秒前
最好的完成签到,获得积分10
1秒前
1秒前
1秒前
灰烬使者发布了新的文献求助10
1秒前
勤劳寒烟完成签到,获得积分10
1秒前
深情安青应助一只好果子采纳,获得10
1秒前
好旺完成签到,获得积分10
2秒前
adrift发布了新的文献求助10
2秒前
WFLLL完成签到,获得积分10
2秒前
fw97发布了新的文献求助10
2秒前
鲸落发布了新的文献求助30
2秒前
麦满分完成签到,获得积分10
2秒前
高高沛萍发布了新的文献求助10
3秒前
小巧日记本完成签到,获得积分10
3秒前
冷酷凌丝完成签到,获得积分10
3秒前
恭喜发财发布了新的文献求助10
3秒前
嘻鱼徐完成签到,获得积分10
4秒前
5秒前
move发布了新的文献求助10
5秒前
li完成签到,获得积分20
5秒前
陶一二完成签到,获得积分10
6秒前
6秒前
疯狂的月亮完成签到,获得积分10
6秒前
木木完成签到 ,获得积分10
6秒前
orixero应助清风采纳,获得10
6秒前
栋仔完成签到,获得积分10
7秒前
8秒前
冰咖啡完成签到,获得积分10
8秒前
翻斗花园612完成签到,获得积分10
8秒前
llllll完成签到 ,获得积分10
8秒前
11111发布了新的文献求助10
8秒前
科研通AI5应助冷酷凌丝采纳,获得30
8秒前
jiujiujiujiu完成签到,获得积分10
9秒前
徒玦完成签到 ,获得积分10
9秒前
alv完成签到,获得积分10
9秒前
9秒前
Silverexile完成签到,获得积分10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
Publishing and Presenting Clinical Research 200
Impacts of a Warming Arctic: Arctic Climate Impact Assessment 200
The Biomechanics of Batting, Swinging, and Hitting 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3695542
求助须知:如何正确求助?哪些是违规求助? 3247000
关于积分的说明 9853274
捐赠科研通 2958682
什么是DOI,文献DOI怎么找? 1622209
邀请新用户注册赠送积分活动 767855
科研通“疑难数据库(出版商)”最低求助积分说明 741293