Mechanism of Graphene Formation via Detonation Synthesis: A DFTB Nanoreactor Approach

纳米反应器 石墨烯 乙炔 起爆 分子 分子动力学 碳纤维 化学物理 氧化物 材料科学 聚合 化学 纳米技术 计算化学 有机化学 纳米颗粒 复合材料 爆炸物 聚合物 复合数
作者
Tingyu Lei,Wenping Guo,Qingya Liu,Haijun Jiao,Dong‐Bo Cao,Botao Teng,Yongwang Li,Xingchen Liu,Xiaodong Wen
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
卷期号:15 (6): 3654-3665 被引量:34
标识
DOI:10.1021/acs.jctc.9b00158
摘要

With the development of theoretical and computational chemistry, as well as high-performance computing, molecular simulation can now be used not only as a tool to explain the experimental results but also as a means for discovery or prediction. Quantum chemical nanoreactor is such a method which can automatically explore the chemical process based only on the basic mechanics without prior knowledge of the reactions. Here, we present a new method which combines the semiempirical quantum mechanical density functional tight-binding (DFTB) method with the nanoreactor molecular dynamic (NMD) method, and we simulated the reaction process of graphene synthesis via detonation at different oxygen/acetylene mole ratios. The formation of graphene is initiated by the breaking of acetylene (C2H2) molecules by collision into pieces such as H atoms, ethynyl (HC≡C•), and vinylidene (H2C═C:) radicals. It is followed by the formation of long straight carbon chains coupled with a few branched carbon chains, which then turned into a 2-D framework made of carbon rings. Trace oxygen could modulate the size of the rings during graphene formation and promote the formation of regular graphene with fused six-membered rings as we see, but the addition of high oxygen content makes more C-containing species oxidized to small oxide molecules instead of polymerization. The calculation speed of the DFTB nanoreactor is greatly improved compared to the ab initio nanoreactor, which makes it a valuable option to simulate chemical processes of large sizes and long time scales and to help us uncover the "unknown unknowns".

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助佩奇666采纳,获得10
刚刚
1秒前
千寻发布了新的文献求助10
1秒前
leilei完成签到,获得积分20
3秒前
5秒前
6秒前
8秒前
10秒前
10秒前
会写日记的乌龟先生完成签到,获得积分10
10秒前
Raza完成签到,获得积分10
10秒前
11秒前
11秒前
12秒前
三人行发布了新的文献求助10
12秒前
12秒前
佩奇666发布了新的文献求助10
14秒前
小成完成签到 ,获得积分10
15秒前
xiaoyao完成签到,获得积分10
16秒前
17秒前
六六完成签到 ,获得积分10
18秒前
赘婿应助千寻采纳,获得10
20秒前
22秒前
云初应助科研通管家采纳,获得10
22秒前
无花果应助科研通管家采纳,获得10
23秒前
在水一方应助科研通管家采纳,获得10
23秒前
情怀应助科研通管家采纳,获得10
23秒前
23秒前
Mic应助科研通管家采纳,获得10
23秒前
浮游应助科研通管家采纳,获得10
23秒前
浮游应助科研通管家采纳,获得10
23秒前
CipherSage应助科研通管家采纳,获得10
23秒前
Mic应助科研通管家采纳,获得10
23秒前
英俊的铭应助科研通管家采纳,获得10
23秒前
852应助科研通管家采纳,获得10
23秒前
浮游应助科研通管家采纳,获得10
23秒前
深情安青应助科研通管家采纳,获得10
23秒前
情怀应助科研通管家采纳,获得10
23秒前
浮游应助科研通管家采纳,获得10
23秒前
C花间照应助科研通管家采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557634
求助须知:如何正确求助?哪些是违规求助? 4642696
关于积分的说明 14668874
捐赠科研通 4584158
什么是DOI,文献DOI怎么找? 2514615
邀请新用户注册赠送积分活动 1488842
关于科研通互助平台的介绍 1459533