Comparison of a Pragmatic and Regression Approach for Wearable EEG Signal Quality Assessment

计算机科学 头戴式耳机 可穿戴计算机 回归 人工智能 脑电图 数据质量 一般化 回归分析 数据集 模式识别(心理学) 数据挖掘 机器学习 统计 数学 工程类 数学分析 嵌入式系统 心理学 精神科 公制(单位) 电信 运营管理
作者
Jolanda Witteveen,Paruthi Pradhapan,Vojkan Mihajlović
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:24 (3): 735-746 被引量:14
标识
DOI:10.1109/jbhi.2019.2920381
摘要

Wearable electroencephalogram (EEG) solutions allow portability and real-time measurements in uncontrolled conditions. For reliable and reproducible interpretation of the EEG data, it is essential to accurately identify EEG segments contaminated by artefacts. Two data quality indicator approaches are proposed: pragmatic and regression based. The former extracts statistical features and applies data-driven thresholding, while the latter uses a regression model on the same set of statistical features to predict data quality. The performance of the approaches is validated against EEG data recorded during uncontrolled laboratory and free-living conditions, and compared to a validated approach. The proposed approaches achieve average accuracy of over 83% in detecting artefactual data, which is higher than the FORCe signal quality estimation method (≈79%). The main strength of the proposed algorithms is in the significant increase of specificity over the state-of-the-art. The two models perform equally across different databases. Training of the two approaches on free-living conditions data showed better generalization when tested on different types of databases, i.e., uncontrolled laboratory and free-living. Although the accuracy in determining artefact-contaminated data is highest when using a window size of 8 s, the accuracy drop is minor when using shorter window size, demonstrating another advantage over existing methods. Given low complexity of both pragmatic and regression approach, it facilitates a real-time implementation, which is demonstrated using a wearable EEG headset system available at IMEC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
ryan完成签到,获得积分10
1秒前
xxxidgkris应助snow采纳,获得20
1秒前
研友_VZG7GZ应助粉色娇嫩采纳,获得10
4秒前
今后应助iwhsgfes采纳,获得10
4秒前
今后应助薄桉采纳,获得10
5秒前
5秒前
5秒前
XuanZhang发布了新的文献求助10
7秒前
8秒前
9秒前
9秒前
英姑应助大力出奇迹采纳,获得10
9秒前
Greetdawn完成签到,获得积分10
10秒前
10秒前
10秒前
12秒前
stories完成签到,获得积分10
12秒前
Hanaooooo发布了新的文献求助10
13秒前
呱呱完成签到,获得积分10
13秒前
ML发布了新的文献求助10
14秒前
cc发布了新的文献求助10
14秒前
15秒前
nsk810431231发布了新的文献求助10
15秒前
乐乐应助俏皮的未来采纳,获得10
15秒前
李小新发布了新的文献求助10
16秒前
不配.应助仓颉采纳,获得10
16秒前
舒心怀绿发布了新的文献求助10
16秒前
eee丶peng发布了新的文献求助10
16秒前
16秒前
17秒前
18秒前
18秒前
99giddens应助Kk采纳,获得10
18秒前
20秒前
jwb711发布了新的文献求助10
21秒前
21秒前
大力出奇迹完成签到,获得积分10
22秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137977
求助须知:如何正确求助?哪些是违规求助? 2788907
关于积分的说明 7789001
捐赠科研通 2445272
什么是DOI,文献DOI怎么找? 1300255
科研通“疑难数据库(出版商)”最低求助积分说明 625878
版权声明 601046