The Search for BaTiO3-Based Piezoelectrics With Large Piezoelectric Coefficient Using Machine Learning

迭代函数 压电 选择(遗传算法) 数据驱动 替代模型 计算机科学 训练集 材料科学 机器学习 人工智能 数学 数学分析 复合材料
作者
Ruihao Yuan,Deqing Xue,Dezhen Xue,Yumei Zhou,Xiangdong Ding,Jun Sun,Turab Lookman
出处
期刊:IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control [Institute of Electrical and Electronics Engineers]
卷期号:66 (2): 394-401 被引量:27
标识
DOI:10.1109/tuffc.2018.2888800
摘要

We employ a data-driven approach to search for BaTiO3-based piezoelectrics with large piezoelectric coefficient d33. Our approach uses a surrogate model to make predictions of d33 with uncertainties, followed by a design step that selects the next optimal compound to synthesize. We compare several combinations of choices of the model and design selection strategies on the training data assembled from many experiments that we have previously performed, and we choose the best two performers for guiding new experiments. This adaptive design strategy is iterated five times and in each iteration, four new compounds are synthesized based on the two different design selection criteria. The best new compound found in this work is (Ba0.85Ca0.15)(Ti0.91Zr0.09)O3 with a d33 of 362 pC/N, compared to the best compound BCT-0.5BZT in the training data with a d33 of ~610 pC/N. Our conclusion from this study is that although our model describes well most of the available d33 data, the especially large value for BCT-0.5BZT is difficult to fit with any surrogate model and emphasizes the need to combine a physics-based approach with a pure data-driven approach used in this study.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
QiuQiu发布了新的文献求助10
1秒前
1秒前
浮游应助阿十采纳,获得10
1秒前
闪闪的摩托完成签到,获得积分10
2秒前
ZHY2023发布了新的文献求助10
2秒前
3秒前
liuhuayaxi发布了新的文献求助10
3秒前
KQ完成签到,获得积分10
3秒前
4秒前
4秒前
乐乐应助顺利萃采纳,获得10
4秒前
QIN123456发布了新的文献求助10
5秒前
深情安青应助adverse采纳,获得10
5秒前
5秒前
WHaha发布了新的文献求助10
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
易中华发布了新的文献求助10
6秒前
FashionBoy应助Elf采纳,获得10
7秒前
7秒前
7秒前
残剑月发布了新的文献求助10
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
搜集达人应助科研通管家采纳,获得10
8秒前
无极微光应助科研通管家采纳,获得20
8秒前
Wind应助科研通管家采纳,获得10
8秒前
张巨锋发布了新的文献求助10
8秒前
8秒前
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
8秒前
我是老大应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
Jenna发布了新的文献求助10
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695186
求助须知:如何正确求助?哪些是违规求助? 5100843
关于积分的说明 15215623
捐赠科研通 4851627
什么是DOI,文献DOI怎么找? 2602586
邀请新用户注册赠送积分活动 1554228
关于科研通互助平台的介绍 1512233