Advanced Data Analytics for Improved Decision-Making at a Veterans Affairs Medical Center

退伍军人事务部 意外后果 仪表板 分析 预测分析 医疗保健 医学 决策支持系统 医疗急救 运营管理 业务 数据科学 计算机科学 工程类 数据挖掘 政治学 内科学 法学
作者
Ajay Mahajan,Parag Madhani,Sanjeevi Chitikeshi,Padmini Selvaganesan,Alex Russell,Preeti Mahajan
出处
期刊:Journal of Healthcare Management [Ovid Technologies (Wolters Kluwer)]
卷期号:64 (1): 54-62 被引量:5
标识
DOI:10.1097/jhm-d-17-00164
摘要

EXECUTIVE SUMMARY This article reports on a data-driven methodology for decision-making at a Veterans Affairs medical center (VAMC) to improve patient outcomes, specifically the 30-day standardized mortality ratio (SMR30). The quarterly strategic analytics for improvement and learning (SAIL) reports are used to visualize the data, study trends, provide actionable recommendations, and identify potential consequences. A case study using more than 4 years of data demonstrates the power of the methodology. After reviewing data and studying trends at other VAMCs, a decision is made to reduce the SMR30 value by 1%. In running correlation algorithms, in-hospital complications (IHC) are shown to be most closely correlated with SMR30. Modeling the results from 17 quarters’ worth of data shows that a desired 1% change in SMR30 would require a targeted 18.6% decrease in IHC. This change, if accomplished, would yield good consequences on methicillin-resistant Staphylococcus aureus mitigation but potentially unintended consequences with catheter-associated urinary tract infections and patient safety indicators that would need to be monitored. This knowledge could enable healthcare leaders to make informed decisions of both potentially positive and unintended consequences that can be monitored and minimized. This study lays the groundwork for a healthy discussion among leaders, staff, and clinicians on the path forward, resources required, and—most importantly—a dashboard that reflects the progress each week rather than a quarterly SAIL report.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈秋完成签到,获得积分10
刚刚
活泼雁兰完成签到 ,获得积分10
2秒前
3秒前
科研通AI2S应助杰帅采纳,获得10
3秒前
陈秋发布了新的文献求助10
3秒前
laola发布了新的文献求助10
4秒前
4秒前
彦y发布了新的文献求助10
6秒前
一只熊发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
9秒前
guo完成签到,获得积分0
9秒前
江上清风游完成签到,获得积分10
9秒前
清脆雅绿完成签到 ,获得积分10
10秒前
花痴的骁发布了新的文献求助10
14秒前
zhtao发布了新的文献求助10
15秒前
zzx完成签到,获得积分10
16秒前
深情安青应助啾啾采纳,获得10
17秒前
自然怀梦完成签到,获得积分10
21秒前
可爱的函函应助贰陆采纳,获得10
23秒前
24秒前
活泼雁兰发布了新的文献求助10
29秒前
彭于彦祖应助慈祥的翠桃采纳,获得30
30秒前
彭于彦祖应助慈祥的翠桃采纳,获得30
30秒前
彭于彦祖应助慈祥的翠桃采纳,获得10
30秒前
彭于彦祖应助慈祥的翠桃采纳,获得30
30秒前
carol应助慈祥的翠桃采纳,获得10
30秒前
monere应助慈祥的翠桃采纳,获得10
30秒前
30秒前
monere应助慈祥的翠桃采纳,获得10
30秒前
科研小白应助慈祥的翠桃采纳,获得10
30秒前
VDC应助慈祥的翠桃采纳,获得30
30秒前
35秒前
star完成签到,获得积分10
37秒前
英俊的铭应助没出门采纳,获得10
37秒前
38秒前
42秒前
44秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3240868
求助须知:如何正确求助?哪些是违规求助? 2885568
关于积分的说明 8239149
捐赠科研通 2554008
什么是DOI,文献DOI怎么找? 1382120
科研通“疑难数据库(出版商)”最低求助积分说明 649471
邀请新用户注册赠送积分活动 625097